Evoluční návrh klasifikátoru obrazů

Loading...
Thumbnail Image

Date

Authors

Koči, Martin

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Táto práca sa zaoberá evolučným návrhom klasifikátora obrazov pomocou genetického programovania, konkrétne kartézskeho genetického programovania. Práca popisuje teoretické základy strojového učenia, evolučných algoritmov a genetického programovania. Súčasťou práce je popísaný návrh programu a jeho implementácia. Ďalej sú vykonané experimenty na dvoch riešených úlohách pre klasifikáciu ručne písaných číslic a klasifikáciu obrázkov kociek pomocou, ktorých sa dá určiť miera demencie pri Parkinsonovej chorobe. Najlepšie navrhnuté riešenie pre čísla má AUC 0.95 a pre kocky 0.86. Navrhnuté riešenia sú porovnané s inými metódami, konkrétne konvolučnými neurónovými sieťami (CNN) a metódou podporných vektorov (SVM). Výsledná AUC pre klasifikáciu číslic, je pre obe CNN a aj SVM 0.99 pre kocky mala CNN  výslednú AUC 0.81 a SVM 0.69. Kocky sú následne porovnané z existujúcim riešením, pri ktorom bola výsledná AUC 0.70, takže na základe výsledkov experimentov je vidieť zlepšenie pri použitej metóde v tejto práci.
This thesis deals with evolutionary design of image classifier with help of genetic programming, specifically with cartesian genetic programming. Thesis discribes teoretical basics of machine learing, evolutionary algorithms and genetic programming. Part of this thesis is described design of the program and its implementation. Futhermore, experiments are performed on two solved tasks for the classification of handwritten digits and the classification of cube drawings, which can be used to determine the rate of dementia in Parkinson's disease. The best designed solution for digits is with AUC of 0.95 and for cubes 0.86. Designed solutions are compared by other methods, namely convolutional neural networks (CNN) and the support vector machines (SVM). The resulting AUC for the classification of digits for both CNN and SVM is 0.99, for cubes CNN has a final AUC 0.81 and SVM 0.69. The cubes are then compared with existing solution, which resulted in AUC 0.70, so that the results of the experiments show an improvement in the method used in this thesis.

Description

Citation

KOČI, M. Evoluční návrh klasifikátoru obrazů [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2021.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

doc. Ing. František Zbořil, Ph.D. (předseda) doc. RNDr. Pavel Smrž, Ph.D. (místopředseda) doc. Ing. Jiří Jaroš, Ph.D. (člen) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen) Ing. Filip Orság, Ph.D. (člen)

Date of acceptance

2021-08-23

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm " C ". Otázky u obhajoby: Objasněte konkrétněji, v jakém směru jsou Vámi navržené klasifikátory "lepšie optimalizované na hardware", jak zmiňujete na str. 45. Je možné toto doložit nějakými daty? Rozdíl úspěšnosti klasifikace pomocí CNN a CGP je poměrně značný. Vidíte ještě prostor, jak Váš přístup vylepšit se zachováním alespoň některých uvedených výhodných vlastností? Komise, například: Co to je kartézská mřížka? Komise, například: Konvoluční neuronové sítě vyšly nejlépe?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO