Application of a Total Pressure Sensor in Supersonic Flow for Shock Wave Analysis Under Low-Pressure Conditions

Loading...
Thumbnail Image
Date
2025-10-10
Authors
Bílek, Michal
Maxa, Jiří
Šabacká, Pavla
Bayer, Robert
Binar, Tomáš
Bača, Petr
Votava, Jiří
Tobiáš, Martin
Žák, Marek
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract
This study examines the design and implementation of a sensor developed to measure total pressure in supersonic flow conditions using nitrogen as the working fluid. Using a combination of absolute and differential pressure sensors, the total pressure distribution downstream of a nozzle—where normal shock waves are generated—was characterized across a range of low-pressure regimes. The experimental results were employed to validate and calibrate computational fluid dynamics (CFD) models, particularly within pressure ranges approaching the limits of continuum mechanics. The validated analyses enabled a more detailed examination of shock-wave behavior under near-continuum conditions, with direct relevance to the operational environment of differentially pumped chambers in Environmental Scanning Electron Microscopy (ESEM). Furthermore, an entropy increase across the normal shock wave at low pressures was quantified, attributed to the extended molecular mean free path and local deviations from thermodynamic equilibrium.
This study examines the design and implementation of a sensor developed to measure total pressure in supersonic flow conditions using nitrogen as the working fluid. Using a combination of absolute and differential pressure sensors, the total pressure distribution downstream of a nozzle—where normal shock waves are generated—was characterized across a range of low-pressure regimes. The experimental results were employed to validate and calibrate computational fluid dynamics (CFD) models, particularly within pressure ranges approaching the limits of continuum mechanics. The validated analyses enabled a more detailed examination of shock-wave behavior under near-continuum conditions, with direct relevance to the operational environment of differentially pumped chambers in Environmental Scanning Electron Microscopy (ESEM). Furthermore, an entropy increase across the normal shock wave at low pressures was quantified, attributed to the extended molecular mean free path and local deviations from thermodynamic equilibrium.
Description
Citation
SENSORS. 2025, vol. 25, issue 20, p. 1-29.
https://www.mdpi.com/1424-8220/25/20/6291
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO