Radar-Based Human Motion Recognition by Using Vital Signs with ECA-CNN

Loading...
Thumbnail Image

Authors

Chen, K.
Gu, M.
Chen, Z.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

Radar technologies reserve a large latent capacity in dealing with human motion recognition (HMR). For the problem that it is challenging to quickly and accurately classify various complex motions, an HMR algorithm combing the attention mechanism and convolution neural network (ECA-CNN) using vital signs is proposed. Firstly, the original radar signal is obtained from human chest wall displacement. Chirp-Z Transform (CZT) algorithm is adopted to refine and amplify the narrow band spectrum region of interest in the global spectrum of the signal, and accurate information on the specific band is extracted. Secondly, six time-domain features were extracted for the neural network. Finally, an ECA-CNN is designed to improve classification accuracy, with a small size, fast speed, and high accuracy of 98%. This method can improve the classification accuracy and efficiency of the network to a large extent. Besides, the size of this network is 100 kb, which is convenient to integrate into the embedded devices.

Description

Citation

Radioengineering. 2023 vol. 32, č. 2, s. 248-255. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2023/23_02_0248_0255.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO