Evaluation of Methods for AR Coefficients Estimation Using Monte Carlo Analysis

Loading...
Thumbnail Image

Date

Authors

Klejmova, Eva

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Aim of this paper is to give recommendation for work with methods used for estimation of coefficients of autoregressive process. We applied Monte Carlo simulations to investigate performance of Burg, Yule-Walker and covariance methods. Evaluation of precision of spectral estimation is done with focus on signal length and lag order. The results are presented in graphical form and briefly discussed. Taking these results into account, Yule-Walker method shows better performance in case of long length signals and in case of overvalued lag order. Burg and covariance methods provide better results in case of short length signal and undervalued lag order.

Description

Citation

Proceedings of the 22nd Conference STUDENT EEICT 2016. s. 375-379. ISBN 978-80-214-5350-0
http://www.feec.vutbr.cz/EEICT/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO