Light-Programmable g-C<sub>3</sub>N<sub>4</sub> Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation

dc.contributor.authorYuan, Yunhuancs
dc.contributor.authorWu, Xianghuacs
dc.contributor.authorKalleshappa, Binducs
dc.contributor.authorPumera, Martincs
dc.coverage.issue1cs
dc.coverage.volume8cs
dc.date.accessioned2025-08-01T12:59:57Z
dc.date.available2025-08-01T12:59:57Z
dc.date.issued2025-01-28cs
dc.description.abstractMicrorobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-C3N4 is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO2 and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-C3N4 for these applications is still in its early stages. This work presents microrobots entirely based on g-C3N4 microtubes, which can initiate autonomous movement when exposed to ultraviolet and visible light. We observed distinct motion behaviors of the microrobots under light irradiation of different wavelengths. Specifically, under ultraviolet light, the microrobots exhibit negative photogravitaxis, while under visible light, they demonstrate a combination of 3-dimensional motion and 2-dimensional motion. Therefore, the wavelength of the light can be used for programming the motion style of the microrobots and subsequently their application. We show that the microrobots can effectively degrade the antibiotic tetracycline, displaying their potential for antibiotic removal. This exploration of autonomous motion behaviors under different wavelength conditions helps to expand research on g-C3N4-based microrobots and their potential for environmental remediation.en
dc.formattextcs
dc.format.extent1-9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationResearch. 2025, vol. 8, issue 1, p. 1-9.en
dc.identifier.doi10.34133/research.0565cs
dc.identifier.issn2639-5274cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other197898cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttps://hdl.handle.net/11012/255387
dc.language.isoencs
dc.publisherAAAScs
dc.relation.ispartofResearchcs
dc.relation.urihttps://spj.science.org/doi/10.34133/research.0565cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2639-5274/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCARBON NITRIDen
dc.subjectEDOPED G-C3N4en
dc.subjectNANOTUBESen
dc.subjectTUBESen
dc.titleLight-Programmable g-C<sub>3</sub>N<sub>4</sub> Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197898en
sync.item.dbtypeVAVen
sync.item.insts2025.08.01 14:59:57en
sync.item.modts2025.08.01 14:33:13en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
research.0565.pdf
Size:
4.57 MB
Format:
Adobe Portable Document Format
Description:
file research.0565.pdf