Development of a Data-Driven Methodology for Rapid Identification of Key Performance Indicators in Motorcycle Racing
| dc.contributor.author | Fojtášek, Jan | cs |
| dc.contributor.author | Böhm, Michael | cs |
| dc.coverage.issue | 1 | cs |
| dc.coverage.volume | 113 | cs |
| dc.date.issued | 2025-10-28 | cs |
| dc.description.abstract | This study presents a novel method for the rapid identification of key performance indicators (KPIs) from measured riding data of a Ducati Panigale V2 motorcycle, aimed at enhancing racing performance through a deeper understanding of rider-vehicle interaction. The methodology involves the design and implementation of mathematical tools within the RaceStudio3 software to analyze data from the motorcycle’s sensor system. This approach facilitates the swift detection of critical events, including gearshift delays, improper throttle control, and suspension issues. The fusion of data from the motorcycle enables a comprehensive evaluation of the rider’s influence on performance. The results demonstrate the potential of the proposed method to provide valuable insights for optimizing motorcycle setup and rider technique. | en |
| dc.description.abstract | This study presents a novel method for the rapid identification of key performance indicators (KPIs) from measured riding data of a Ducati Panigale V2 motorcycle, aimed at enhancing racing performance through a deeper understanding of rider-vehicle interaction. The methodology involves the design and implementation of mathematical tools within the RaceStudio3 software to analyze data from the motorcycle’s sensor system. This approach facilitates the swift detection of critical events, including gearshift delays, improper throttle control, and suspension issues. The fusion of data from the motorcycle enables a comprehensive evaluation of the rider’s influence on performance. The results demonstrate the potential of the proposed method to provide valuable insights for optimizing motorcycle setup and rider technique. | en |
| dc.format | text | cs |
| dc.format.extent | 1-10 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Engineering Proceedings. 2025, vol. 113, issue 1, p. 1-10. | en |
| dc.identifier.doi | 10.3390/engproc2025113012 | cs |
| dc.identifier.issn | 2673-4591 | cs |
| dc.identifier.orcid | 0000-0003-1689-2755 | cs |
| dc.identifier.orcid | 0000-0001-5845-2163 | cs |
| dc.identifier.other | 200050 | cs |
| dc.identifier.researcherid | ADE-4108-2022 | cs |
| dc.identifier.researcherid | MIU-5392-2025 | cs |
| dc.identifier.scopus | 57204353284 | cs |
| dc.identifier.scopus | 57223847582 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/255772 | |
| dc.language.iso | en | cs |
| dc.relation.ispartof | Engineering Proceedings | cs |
| dc.relation.uri | https://www.mdpi.com/2673-4591/113/1/12 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2673-4591/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | data analysis | en |
| dc.subject | key performance indicators (KPIs) | en |
| dc.subject | mathematical modeling | en |
| dc.subject | motorcycle dynamics | en |
| dc.subject | performance optimization | en |
| dc.subject | rider-vehicle interaction | en |
| dc.subject | data analysis | |
| dc.subject | key performance indicators (KPIs) | |
| dc.subject | mathematical modeling | |
| dc.subject | motorcycle dynamics | |
| dc.subject | performance optimization | |
| dc.subject | rider-vehicle interaction | |
| dc.title | Development of a Data-Driven Methodology for Rapid Identification of Key Performance Indicators in Motorcycle Racing | en |
| dc.title.alternative | Development of a Data-Driven Methodology for Rapid Identification of Key Performance Indicators in Motorcycle Racing | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| eprints.grantNumber | info:eu-repo/grantAgreement/MSM/EH/EH23_020/0008528 | cs |
| sync.item.dbid | VAV-200050 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2026.01.06 14:53:31 | en |
| sync.item.modts | 2026.01.06 14:32:29 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automobilního a dopravního inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- engproc11300012v2.pdf
- Size:
- 4.02 MB
- Format:
- Adobe Portable Document Format
- Description:
- file engproc11300012v2.pdf
