Functional metal-based 3D-printed electronics engineering: Tunability and bio-recognition

dc.contributor.authorMuoz Martin, Jose Mariacs
dc.contributor.authorRedondo Negrete, Edurnecs
dc.contributor.authorPumera, Martincs
dc.coverage.issue1cs
dc.coverage.volume28cs
dc.date.issued2022-08-01cs
dc.description.abstract3D-printing technology has brought light to the large-scale and sustainable production of a wide range of low-cost electronic devices with custom forms on-demand. Despite the current availability of mainstream carbon-based nanocomposite filaments, 3D-printing of noble metals is nowadays a challenge. Herein, a one-step func-tionalization approach has been devised for the straightforward and cost-effective manufacturing of functional metal-based 3D-printed electronics by galvanically replacing Cu-based 3D-printed (3D-Cu) electrodes with nobler metal counterparts, viz. Ag and Au. As a first demonstration of applicability, two appealing bio-electroanalytical approaches, such as the chiral discrimination of amino acids and the supramolecular deter-mination of uranium have been considered -by taking advantage of the capability of noble metals to physically/ chemically accommodate several molecular components-, reaching enhanced performances when compared with the pristine 3D-Cu counterpart. Consequently, this alchemy-inspired approach, which combines (i) 3D-Cu electrodes as sacrificial platforms with (ii) noble metals via a galvanic exchange reaction, provides a robust pathway to harbor molecular components in order to exploit metal-based 3D-printed electronics in real tasks.en
dc.formattextcs
dc.format.extent1-6cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationApplied Materials Today. 2022, vol. 28, issue 1, p. 1-6.en
dc.identifier.doi10.1016/j.apmt.2022.101519cs
dc.identifier.issn2352-9407cs
dc.identifier.orcid0000-0001-9529-6980cs
dc.identifier.orcid0000-0003-1696-3787cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other178674cs
dc.identifier.researcheridW-3612-2019cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.scopus56377080700cs
dc.identifier.scopus56117570300cs
dc.identifier.urihttp://hdl.handle.net/11012/208479
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofApplied Materials Todaycs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2352940722001548cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2352-9407/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectCuen
dc.subjectPLA electrodesen
dc.subjectGalvanic replacementen
dc.subjectChiral biosensorsen
dc.subjectSupramolecular chemistryen
dc.subjectNoble metalsen
dc.titleFunctional metal-based 3D-printed electronics engineering: Tunability and bio-recognitionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-178674en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:50:32en
sync.item.modts2025.01.17 18:36:26en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
j.apmt.2022.101519_accepted.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Description:
file j.apmt.2022.101519_accepted.pdf