Balanced-Output CCCFOA and Its Utilization in Grounded Inductance Simulator with Various Orders
Loading...
Date
2018-07-04
Authors
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Altmetrics
Abstract
In this paper, a new realization of current-controlled current feedback operational amplifier with balanced voltage outputs (BO-CCCFOA) is presented. A resistorless grounded lossless positive inductance simulator (PIS) using two BO-CCCFOAs and a grounded capacitor is reported. The resulting equivalent inductance value of PIS can be adjusted either via change of input intrinsic resistance of BO-CCCFOAs by means of biasing currents or by order of fractional-order capacitor (FoC). FoCs of order = (0.25; 0.5; 0.75; 1) were emulated via 5th-order Foster II RC network and values optimized using modified least squares quadratic (MLSQ) method. In frequency range 30 kHz - 30 MHz the obtained phase angle deviation of FoCs and mean values of corresponding relative phase error are below ±1 degree and ±4.3%, respectively. Considering the bandwidth for phase angle deviation less than 3 degree, the proposed fractional-order PIS operates over two decades. The behavior of the PIS circuit with various orders was tested via implementation in RLC ladder prototype of voltage-mode high-pass filter. Theoretical results are verified by SPICE simulations using TSMC 0.18 m level-7 LO EPI SCN018 CMOS process parameters with ±1 V supply voltages.
In this paper, a new realization of current-controlled current feedback operational amplifier with balanced voltage outputs (BO-CCCFOA) is presented. A resistorless grounded lossless positive inductance simulator (PIS) using two BO-CCCFOAs and a grounded capacitor is reported. The resulting equivalent inductance value of PIS can be adjusted either via change of input intrinsic resistance of BO-CCCFOAs by means of biasing currents or by order of fractional-order capacitor (FoC). FoCs of order = (0.25; 0.5; 0.75; 1) were emulated via 5th-order Foster II RC network and values optimized using modified least squares quadratic (MLSQ) method. In frequency range 30 kHz - 30 MHz the obtained phase angle deviation of FoCs and mean values of corresponding relative phase error are below ±1 degree and ±4.3%, respectively. Considering the bandwidth for phase angle deviation less than 3 degree, the proposed fractional-order PIS operates over two decades. The behavior of the PIS circuit with various orders was tested via implementation in RLC ladder prototype of voltage-mode high-pass filter. Theoretical results are verified by SPICE simulations using TSMC 0.18 m level-7 LO EPI SCN018 CMOS process parameters with ±1 V supply voltages.
In this paper, a new realization of current-controlled current feedback operational amplifier with balanced voltage outputs (BO-CCCFOA) is presented. A resistorless grounded lossless positive inductance simulator (PIS) using two BO-CCCFOAs and a grounded capacitor is reported. The resulting equivalent inductance value of PIS can be adjusted either via change of input intrinsic resistance of BO-CCCFOAs by means of biasing currents or by order of fractional-order capacitor (FoC). FoCs of order = (0.25; 0.5; 0.75; 1) were emulated via 5th-order Foster II RC network and values optimized using modified least squares quadratic (MLSQ) method. In frequency range 30 kHz - 30 MHz the obtained phase angle deviation of FoCs and mean values of corresponding relative phase error are below ±1 degree and ±4.3%, respectively. Considering the bandwidth for phase angle deviation less than 3 degree, the proposed fractional-order PIS operates over two decades. The behavior of the PIS circuit with various orders was tested via implementation in RLC ladder prototype of voltage-mode high-pass filter. Theoretical results are verified by SPICE simulations using TSMC 0.18 m level-7 LO EPI SCN018 CMOS process parameters with ±1 V supply voltages.
Description
Keywords
BO-CCCFOA, current-controlled current feedback operational amplifier, fractional-order capacitor, FoC, fractional-order inductor, FoI, positive inductance simulator, RLC prototype, voltage-mode, BO-CCCFOA, current-controlled current feedback operational amplifier, fractional-order capacitor, FoC, fractional-order inductor, FoI, positive inductance simulator, RLC prototype, voltage-mode
Citation
Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP). 2018, p. 188-191.
https://ieeexplore.ieee.org/document/8441349/
https://ieeexplore.ieee.org/document/8441349/
Document type
Peer-reviewed
Document version
Accepted version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
(C) IEEE