Machine Intelligence Technique for Blockage Effects in Next-Generation Heterogeneous Networks

Loading...
Thumbnail Image

Authors

Amalorpava Mary Rajee, Samuel
Merline, Arulraj

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

Millimeter wave (mmWave) links such as 28 GHz and 60 GHz propose high data rates and capacity needed in 5G Heterogeneous network (Hetnet) real-time system. The key factors in network planning of Hetnet are the locations and links of base stations, and their coverage, transmitted power, antenna angle, orientation etc. How-ever, large-scale blockages like static buildings, human etc. affect the performance of urban Hetnets especially at mmWave frequencies. A mathematical framework to model dynamic blockages is adapted and their impact on cellular network performance is analyzed. A machine learning approach based on Q-learning with Epsilon-Greedy algo¬rithm is proposed to solve the blockage problem in such complex networks. The proposed results are evident and show the positive effect of increasing the base station den¬sity linearly with the blockage density to maintain the net¬work connectivity. The performance of the proposed Epsi¬lon-Greedy algorithm is compared with Epsilon-Soft algo-rithm. The performances of above said mmWave links are compared in terms of their coverage probability and throughput. The results show that an Epsilon-Greedy algo¬rithm outperforms an Epsilon-Soft algorithm.

Description

Citation

Radioengineering. 2020 vol. 29, č. 3, s. 555-562. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2020/20_03_0555_0562.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO