0.3V Bulk-driven current conveyor

Loading...
Thumbnail Image

Authors

Khateb, Fabian
Kulej, Tomasz
Kumngern, Montree

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

This paper presents the design and the experimental results of a sub 0.5 V bulk-driven (BD) current conveyor (CCII) using 0.18 µm TSMC CMOS technology with total chip area of 0.0134 mm2. All transistors are biased in subthreshold region for low-voltage low-power operation and the input transistors are controlled from their bulk terminals for rail-to-rail input voltage range. The circuit is designed to work with voltage supply (VDD = 0.3V) which is much lower than the threshold voltage of the MOS transistor (VTH=0.5V) while consuming 19 nW of power. The measurement results confirm the proper function of the proposed circuit.
This paper presents the design and the experimental results of a sub 0.5 V bulk-driven (BD) current conveyor (CCII) using 0.18 µm TSMC CMOS technology with total chip area of 0.0134 mm2. All transistors are biased in subthreshold region for low-voltage low-power operation and the input transistors are controlled from their bulk terminals for rail-to-rail input voltage range. The circuit is designed to work with voltage supply (VDD = 0.3V) which is much lower than the threshold voltage of the MOS transistor (VTH=0.5V) while consuming 19 nW of power. The measurement results confirm the proper function of the proposed circuit.

Description

Citation

IEEE Access. 2019, vol. 7, issue 1, IF: 4.098, p. 65122-65128.
https://ieeexplore.ieee.org/document/8715344

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO