Evaluation Of Cnn And Cldnn Architectures On Radio Modulation Datasets
but.event.date | 27.04.2021 | cs |
but.event.title | STUDENT EEICT 2021 | cs |
dc.contributor.author | Pijáčková, Kristýna | |
dc.date.accessioned | 2021-07-21T07:06:53Z | |
dc.date.available | 2021-07-21T07:06:53Z | |
dc.date.issued | 2021 | cs |
dc.description.abstract | This paper presents an evaluation of deep learning architectures designed for modulationrecognition. The evaluation inspects, whether the architectures behave in the same way as they didon the dataset they were designed on. The architectures are trained and tested on two different radiomodulation datasets. This results in proposing additional binary classification as a method to reducemisclassification of QAM modulation types in one of the datasets. | en |
dc.format | text | cs |
dc.format.extent | 42-45 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 42-45. ISBN 978-80-214-5942-7 | cs |
dc.identifier.isbn | 978-80-214-5942-7 | |
dc.identifier.uri | http://hdl.handle.net/11012/200673 | |
dc.language.iso | cs | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Radio modulation | en |
dc.subject | classification | en |
dc.subject | neural network | en |
dc.subject | deep learning | en |
dc.subject | CNN | en |
dc.subject | CLDNN | en |
dc.title | Evaluation Of Cnn And Cldnn Architectures On Radio Modulation Datasets | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 42_eeict-2021_1.pdf
- Size:
- 729.44 KB
- Format:
- Adobe Portable Document Format
- Description: