Evaluation Of Cnn And Cldnn Architectures On Radio Modulation Datasets

but.event.date27.04.2021cs
but.event.titleSTUDENT EEICT 2021cs
dc.contributor.authorPijáčková, Kristýna
dc.date.accessioned2021-07-21T07:06:53Z
dc.date.available2021-07-21T07:06:53Z
dc.date.issued2021cs
dc.description.abstractThis paper presents an evaluation of deep learning architectures designed for modulationrecognition. The evaluation inspects, whether the architectures behave in the same way as they didon the dataset they were designed on. The architectures are trained and tested on two different radiomodulation datasets. This results in proposing additional binary classification as a method to reducemisclassification of QAM modulation types in one of the datasets.en
dc.formattextcs
dc.format.extent42-45cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 42-45. ISBN 978-80-214-5942-7cs
dc.identifier.isbn978-80-214-5942-7
dc.identifier.urihttp://hdl.handle.net/11012/200673
dc.language.isocscs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 27st Conference STUDENT EEICT 2021: General papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazenics
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectRadio modulationen
dc.subjectclassificationen
dc.subjectneural networken
dc.subjectdeep learningen
dc.subjectCNNen
dc.subjectCLDNNen
dc.titleEvaluation Of Cnn And Cldnn Architectures On Radio Modulation Datasetsen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
42_eeict-2021_1.pdf
Size:
729.44 KB
Format:
Adobe Portable Document Format
Description: