Evaluation Of Cnn And Cldnn Architectures On Radio Modulation Datasets

Loading...
Thumbnail Image

Date

Authors

Pijáčková, Kristýna

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

This paper presents an evaluation of deep learning architectures designed for modulationrecognition. The evaluation inspects, whether the architectures behave in the same way as they didon the dataset they were designed on. The architectures are trained and tested on two different radiomodulation datasets. This results in proposing additional binary classification as a method to reducemisclassification of QAM modulation types in one of the datasets.

Description

Citation

Proceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 42-45. ISBN 978-80-214-5942-7
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

cs

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO