Influence of New Aprotic Electrolytes on Negative Electrode Materials for Lithium-ion Batteries

Loading...
Thumbnail Image

Authors

Máca, Josef
Libich, Jiří
Sedlaříková, Marie
Vondrák, Jiří
Straková Fedorková, Andrea

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

ESG

Abstract

This paper briefly describes experiments which investigate mutual compatibility of aprotic solvents and negative electrode materials. The work follows the current trend of enhancing fire safety by using new kinds of aprotic solvents. Solvents and their mixtures used in this work have a higher flash point than solvents commonly used in lithium-ion batteries, e.g. sulfolane. The influence of electrolytes on the proper operation of negative electrode materials was considered. In these experiments, graphite and lithium titanate oxide, Li4Ti5O12 were used as a negative electrode materials. Various combinations of aprotic solvents and negative electrode materials were tested. The main objective of these experiments was to find an aprotic electrolyte with a higher fire safety that can properly operate in a system containing standard negative electrode materials, used in lithium-ion batteries. Also the stability of the SEI layer has been investigated in different electrolytes.
This paper briefly describes experiments which investigate mutual compatibility of aprotic solvents and negative electrode materials. The work follows the current trend of enhancing fire safety by using new kinds of aprotic solvents. Solvents and their mixtures used in this work have a higher flash point than solvents commonly used in lithium-ion batteries, e.g. sulfolane. The influence of electrolytes on the proper operation of negative electrode materials was considered. In these experiments, graphite and lithium titanate oxide, Li4Ti5O12 were used as a negative electrode materials. Various combinations of aprotic solvents and negative electrode materials were tested. The main objective of these experiments was to find an aprotic electrolyte with a higher fire safety that can properly operate in a system containing standard negative electrode materials, used in lithium-ion batteries. Also the stability of the SEI layer has been investigated in different electrolytes.

Description

Citation

International Journal of Electrochemical Science. 2015, vol. 10, issue 7, p. 5264-5275.
http://www.electrochemsci.org/papers/vol10/100705264.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO