DOA Estimation of LFM Signal Based on Single-Source Time-Frequency Points Selection Algorithm by Using the Hough Transform

Loading...
Thumbnail Image

Authors

Zhang, Weike
Cui, Kaibo
Wu, Weiwei
Xie, Tao
Yuan, Naichang

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

Direction of arrival (DOA) estimation performance may degrade substantially when linear frequency modulation (LFM) signals are spectrally-overlapped in time-frequency (TF) domain. In order to solve this problem, the single-source TF points selection algorithm based on Wigner-Ville distribution (WVD) and Hough transform is studied in this paper. Firstly, the signal intersections in TF domain can be solved based on the Hough transform. Secondly, by removing multiple-source TF points at intersections according to the empirical threshold value which is calculated by using the statistical experiment method, we can get single-source TF points set. Then, based on the Euclidean distance operator, single-source TF points set belonging to each signal can be obtained according to the property that TF points of the same signal have the same eigenvector. Finally, the averaged spatial TF distribution matrix is constructed and DOA estimation is realized based on the multiple signal classification (MUSIC) algorithm. In this way, the proposed algorithm can resolve the TF non-disjoint LFM signals because it can automatically select single-source TF points set of each signal. Simulation results illustrate that the proposed algorithm possesses higher angular resolution and has pretty good DOA estimation precision compared with existing algorithms.

Description

Citation

Radioengineering. 2019 vol. 28, č. 1, s. 265-275. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2019/19_01_0265_0275.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO