Depth-Based Determination of a 3D Hand Position

Loading...
Thumbnail Image

Date

Authors

Ondris, Ladislav

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Cílem této práce je určení kostry ruky z hloubkového obrazu a jeho následné využití k rozpoznání statického gesta. Na vstupu je hloubkový obrázek, ve kterém je nejprve detekována ruka pomocí neuronové sítě Tiny YOLOv3. Následně je obrázek zbaven pozadí a z takto předzpracovaného obrázku je určena kostra ruky v podobě 21 klíčových bodů neuronovou sítí JGR-P2O. K rozpoznání gesta z klíčových bodů ruky byla navržena technika, která porovná kostru na vstupu s uživatelem definovanými gesty. Funkcionalita systému byla otestována na vytvořeném datasetu s více než čtyřmi tisíci obrázky.
This work aims to offer a real-time, depth-based gesture recognition system using a hand's skeletal information. The Tiny YOLOv3 neural network detects the hand in the depth image. The detected hand is rid of the background and used by the JGR-P2O neural network, which estimates the hand's skeleton represented by 21 key points. Furthermore, a novel technique for gesture recognition from hand key points that compares the input skeleton with user-defined gestures has been proposed. A dataset consisting of four thousand images was captured to evaluate the system.

Description

Citation

ONDRIS, L. Depth-Based Determination of a 3D Hand Position [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2021.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Informační technologie

Comittee

prof. Dr. Ing. Pavel Zemčík, dr. h. c. (předseda) doc. Ing. Lukáš Burget, Ph.D. (místopředseda) doc. Mgr. Lukáš Holík, Ph.D. (člen) doc. Ing. Tomáš Martínek, Ph.D. (člen) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen)

Date of acceptance

2021-06-14

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A. Otázky u obhajoby: Can you better explain the mean joint error metric used in your thesis? Have you considered any other metrics that would be useful for pose estimation and gesture detection than those mentioned in the thesis?

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO