Effects of solid friction modifier on friction and rolling contact fatigue damage of wheel-rail surfaces
Loading...
Date
2021-07-22
Authors
Song, Jingdong
Shi, Lu-bing
Ding, Haohao
Galas, Radovan
Omasta, Milan
Wang, Wenjian
Guo, Jun
Liu, Qi-Yue
Hartl, Martin
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Altmetrics
Abstract
In railway network, friction is an important factor to consider in terms of the service behaviors of wheel-rail system. The objective of this study was to investigate the effect of a solid friction modifier (FM) in a railway environment. This was achieved by studying the friction, wear, and rolling contact fatigue (RCF) damage on the wheel-rail materials at different slip ratios. The results showed that when a solid FM was applied, the friction coefficient decreased. After the solid FM was separated from the wheel-rail interface, the friction coefficient gradually increased to its original level. With the application of the solid FM, the wear rates of the wheel-rail decreased. In addition, the thickness and hardness of the plastic deformation layers of the wheel-rail materials were reduced. The worn surfaces of the wheel-rail were dominated by pits and RCF cracks. Without the FM, RCF cracks ranged from 84 to 120 mu m, and subsurface cracks were generated. However, with the FM, RCF cracks ranged from 17 to 97 mu m and no subsurface cracks were generated. These findings indicate possible methods of improving the performance of railway rolling stock by managing friction, and reducing wear and permanent RCF damage affecting both the wheels and rails.
In railway network, friction is an important factor to consider in terms of the service behaviors of wheel-rail system. The objective of this study was to investigate the effect of a solid friction modifier (FM) in a railway environment. This was achieved by studying the friction, wear, and rolling contact fatigue (RCF) damage on the wheel-rail materials at different slip ratios. The results showed that when a solid FM was applied, the friction coefficient decreased. After the solid FM was separated from the wheel-rail interface, the friction coefficient gradually increased to its original level. With the application of the solid FM, the wear rates of the wheel-rail decreased. In addition, the thickness and hardness of the plastic deformation layers of the wheel-rail materials were reduced. The worn surfaces of the wheel-rail were dominated by pits and RCF cracks. Without the FM, RCF cracks ranged from 84 to 120 mu m, and subsurface cracks were generated. However, with the FM, RCF cracks ranged from 17 to 97 mu m and no subsurface cracks were generated. These findings indicate possible methods of improving the performance of railway rolling stock by managing friction, and reducing wear and permanent RCF damage affecting both the wheels and rails.
In railway network, friction is an important factor to consider in terms of the service behaviors of wheel-rail system. The objective of this study was to investigate the effect of a solid friction modifier (FM) in a railway environment. This was achieved by studying the friction, wear, and rolling contact fatigue (RCF) damage on the wheel-rail materials at different slip ratios. The results showed that when a solid FM was applied, the friction coefficient decreased. After the solid FM was separated from the wheel-rail interface, the friction coefficient gradually increased to its original level. With the application of the solid FM, the wear rates of the wheel-rail decreased. In addition, the thickness and hardness of the plastic deformation layers of the wheel-rail materials were reduced. The worn surfaces of the wheel-rail were dominated by pits and RCF cracks. Without the FM, RCF cracks ranged from 84 to 120 mu m, and subsurface cracks were generated. However, with the FM, RCF cracks ranged from 17 to 97 mu m and no subsurface cracks were generated. These findings indicate possible methods of improving the performance of railway rolling stock by managing friction, and reducing wear and permanent RCF damage affecting both the wheels and rails.
Description
Citation
Friction. 2021, vol. 10, issue 4, p. 597-607.
https://link.springer.com/article/10.1007%2Fs40544-021-0521-5
https://link.springer.com/article/10.1007%2Fs40544-021-0521-5
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en

0000-0001-7364-899X