Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications

dc.contributor.authorLázár, Istváncs
dc.contributor.authorČelko, Ladislavcs
dc.contributor.authorMenelaou, Melitacs
dc.coverage.issue9cs
dc.coverage.volume9cs
dc.date.accessioned2023-11-14T11:56:57Z
dc.date.available2023-11-14T11:56:57Z
dc.date.issued2023-09-13cs
dc.description.abstractAerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques.en
dc.formattextcs
dc.format.extent40cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationGels. 2023, vol. 9, issue 9, 40 p.en
dc.identifier.doi10.3390/gels9090746cs
dc.identifier.issn2310-2861cs
dc.identifier.orcid0000-0003-0264-3483cs
dc.identifier.orcid0000-0001-7845-8802cs
dc.identifier.other185034cs
dc.identifier.researcheridD-6870-2012cs
dc.identifier.researcheridJ-9511-2014cs
dc.identifier.scopus25621022900cs
dc.identifier.scopusMenelaou Melitacs
dc.identifier.urihttp://hdl.handle.net/11012/214453
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofGelscs
dc.relation.urihttps://www.mdpi.com/2310-2861/9/9/746cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2310-2861/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectaerogelen
dc.subjecttissue engineeringen
dc.subjectartificial bone substitutionen
dc.subjectin vitro and in vivo bioactivityen
dc.subjectbiodegradationen
dc.subjectcartilage regenerationen
dc.subjectscaffolden
dc.subjectosteogenesisen
dc.subjectsimulated body fluidsen
dc.subjectimmortalized cell linesen
dc.titleAerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implicationsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-185034en
sync.item.dbtypeVAVen
sync.item.insts2023.11.14 12:56:57en
sync.item.modts2023.11.14 12:15:54en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé povlakycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gels0900746.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
Description:
gels0900746.pdf