Sprung mass positioning by semi-actively controlled damper

Loading...
Thumbnail Image

Authors

Jeniš, Filip
Mazůrek, Ivan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

EDP Sciences
Altmetrics

Abstract

Recently, the intensive wear of rails, especially in curves of small radii and at switches, has been studied. The wear is caused by the high lateral force peak of the wheel against the rail when entering the curves. An effective solution for reducing undesirable lateral forces on the rail is to rotate the vehicle bogie in the direction of the rail curve, which influences the distribution of lateral force over the first and second wheelset. This reduces the force peak and thus the track wear. The bogie rotation is nowadays realized by actuators, which replace the yaw dampers. However, actuator implementation is complicated, expensive, energyintensive and demanding for the performance of a fail-safe system. From this point of view, a semi-actively controlled yaw damper appears to be a better candidate. An algorithm such as Skyhook can hold the sprung mass in the desired position. It is believed to be possible to rotate the vehicle bogie by the special S/A control strategy of a yaw damper. This paper deals with the possibilities and limits of the positioning of the sprung mass by the semi-actively controlled damper. It has been shown that the system relative attenuation and the damper response time have the greatest influence on the mass positioning efficiency.
Recently, the intensive wear of rails, especially in curves of small radii and at switches, has been studied. The wear is caused by the high lateral force peak of the wheel against the rail when entering the curves. An effective solution for reducing undesirable lateral forces on the rail is to rotate the vehicle bogie in the direction of the rail curve, which influences the distribution of lateral force over the first and second wheelset. This reduces the force peak and thus the track wear. The bogie rotation is nowadays realized by actuators, which replace the yaw dampers. However, actuator implementation is complicated, expensive, energyintensive and demanding for the performance of a fail-safe system. From this point of view, a semi-actively controlled yaw damper appears to be a better candidate. An algorithm such as Skyhook can hold the sprung mass in the desired position. It is believed to be possible to rotate the vehicle bogie by the special S/A control strategy of a yaw damper. This paper deals with the possibilities and limits of the positioning of the sprung mass by the semi-actively controlled damper. It has been shown that the system relative attenuation and the damper response time have the greatest influence on the mass positioning efficiency.

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO