3D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storage

dc.contributor.authorNouseen, Shaistacs
dc.contributor.authorGhosh, Kalyancs
dc.contributor.authorPumera, Martincs
dc.coverage.issue3cs
dc.coverage.volume160cs
dc.date.accessioned2025-02-03T14:50:38Z
dc.date.available2025-02-03T14:50:38Z
dc.date.issued2024-03-01cs
dc.description.abstractTwo-dimensional (2D) MXenes are promising materials for a variety of sustainable energy-related applications such as photoelectrochemical water splitting and energy storage devices. Among the MXene family, the Ti3C2Tx is mostly prepared by selective etching of Al from the Ti3AlC2 MAX phase using hydrofluoric acid (HF) or in-situ produced HF as an etchant. However, the severe toxicity, handling of HF acid as well as the oxidation and degradation of freshly synthesized MXenes when stored as aqueous suspensions obstruct the large-scale production of MXenes. 3D printing is an innovative and versatile technology utilized for a plethora of applications in the field of energy applications. Thus, integration of 3D printing technology with the synthesis procedure of MXene will provide a new outlook for large-scale production and the long-storing capability of MXene. Herein, we fabricated a novel MAX (Ti3AlC2)/polylactic acid (PLA) filament for fused deposition modeling (FDM) 3D printing followed by etching of the 3D-printed MAX/PLA electrode into 3DP-etched-MAX employing chronoamperometry technique consecutively in 9 M HCl and 4 M NaOH as electrolytes. The 3D printed electrochemically etched MAX (3DP-etched-MAX) electrode shows promising behaviour for the photoelectrochemical hydrogen evolution reaction (HER) and capacitive performance. In general, this work demonstrates a path of production of large-scale manufacturing of MAX/PLA filament and 3DP-etched-MAX electrodes without using toxic HF for energy conversion and energy storage applications. This work paves the way to fabricate other novel MAX filaments and electrodes for several applications beyond energy conversion and storage.en
dc.formattextcs
dc.format.extent9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationELECTROCHEMISTRY COMMUNICATIONS. 2024, vol. 160, issue 3, 9 p.en
dc.identifier.doi10.1016/j.elecom.2023.107652cs
dc.identifier.issn1873-1902cs
dc.identifier.orcid0000-0001-6840-6590cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other188957cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttps://hdl.handle.net/11012/249993
dc.language.isoencs
dc.publisherELSEVIER SCIENCE INCcs
dc.relation.ispartofELECTROCHEMISTRY COMMUNICATIONScs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1388248123002278?via%3Dihubcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1873-1902/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectElectrochemical etchingen
dc.subjectMXenesen
dc.subjectMAXen
dc.subject3D printingen
dc.subjectElectrodeen
dc.subjectHydrogen evolution reactionen
dc.subjectSupercapacitoren
dc.title3D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storageen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-188957en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:50:38en
sync.item.modts2025.01.17 18:39:00en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S1388248123002278main.pdf
Size:
4.44 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S1388248123002278main.pdf