Stress and Emotion Open Access Data: A Review on Datasets, Modalities, Methods, Challenges, and Future Research Perspectives
dc.contributor.author | Ometov, Aleksandr | cs |
dc.contributor.author | Mezina, Anzhelika | cs |
dc.contributor.author | Lin, Hsiao-Chun | cs |
dc.contributor.author | Arponen, Otso | cs |
dc.contributor.author | Burget, Radim | cs |
dc.contributor.author | Nurmi, Jari | cs |
dc.coverage.issue | 6 | cs |
dc.coverage.volume | 9 | cs |
dc.date.accessioned | 2025-08-07T05:57:02Z | |
dc.date.available | 2025-08-07T05:57:02Z | |
dc.date.issued | 2025-06-18 | cs |
dc.description.abstract | Remote continuous patient monitoring is an essential feature of eHealth systems, offering opportunities for personalized care. Among its emerging applications, emotion and stress recognition hold significant promise, but face major challenges due to the subjective nature of emotions and the complexity of collecting and interpreting related data. This paper presents a review of open access multimodal datasets used in emotion and stress detection. It focuses on dataset characteristics, acquisition methods, and classification challenges, with attention to physiological signals captured by wearable devices, as well as advanced processing methods of these data. The findings show notable advances in data collection and algorithm development, but limitations remain, e.g., variability in real-world conditions, individual differences in emotional responses, and difficulties in objectively validating emotional states. The inclusion of self-reported and contextual data can enhance model performance, yet lacks consistency and reliability. Further barriers include privacy concerns, annotation of long-term data, and ensuring robustness in uncontrolled environments. By analyzing the current landscape and highlighting key gaps, this study contributes a foundation for future work in emotion recognition. Progress in the field will require privacy-preserving data strategies and interdisciplinary collaboration to develop reliable, scalable systems. These advances can enable broader adoption of emotion-aware technologies in eHealth and beyond. | en |
dc.format | text | cs |
dc.format.extent | 247-279 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Journal of Healthcare Informatics Research. 2025, vol. 9, issue 6, p. 247-279. | en |
dc.identifier.doi | 10.1007/s41666-025-00200-0 | cs |
dc.identifier.issn | 2509-4971 | cs |
dc.identifier.orcid | 0000-0003-1849-5390 | cs |
dc.identifier.other | 198172 | cs |
dc.identifier.scopus | 23011250200 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/255407 | |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartof | Journal of Healthcare Informatics Research | cs |
dc.relation.uri | https://link.springer.com/article/10.1007/s41666-025-00200-0 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2509-4971/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Emotion | en |
dc.subject | Stress | en |
dc.subject | Recognition | en |
dc.subject | Detection | en |
dc.subject | Dataset | en |
dc.subject | eHealth | en |
dc.subject | Wearable | en |
dc.subject | Open access | en |
dc.subject | Review | en |
dc.title | Stress and Emotion Open Access Data: A Review on Datasets, Modalities, Methods, Challenges, and Future Research Perspectives | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-198172 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.08.07 07:57:02 | en |
sync.item.modts | 2025.08.07 07:34:08 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41666025002000.pdf
- Size:
- 1.33 MB
- Format:
- Adobe Portable Document Format
- Description:
- file s41666025002000.pdf