Psychological Stress Detection in Speech Using Return-to-opening Phase Ratios in Glottis
Loading...
Date
Authors
Staněk, Miroslav
Sigmund, Milan
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Kaunas University of Technology
ORCID
Altmetrics
Abstract
This paper is focused on investigation of psychological stress in speech signal using shapes of normalised glottal pulses. The pulses were estimated by two algorithms: the Direct Inverse Filtering and Iterative and Adaptive Inverse Filtering. Normalised glottal pulses are divided into opening and return phase, and a feature vector characterizing each glottal pulse is calculated for a series of n percentage interval in time domain. Each feature vector is created by parameters describing its return to opening phase ratio, namely chosen intervals, kurtosis, skewness, and area. Further, psychological stress is detected by feature vector and four different classifiers. Experimental results show, that the best accuracy approaching 95 % is reached with Gaussian Mixture Models classifier. All the best results were obtained regarding only the interval of 5 % from both phase durations, i.e. for and after pulse peak, where the most significant differences between normal and stressed speech in feature vector are occurred. Presented experiments were performed on our own speech database containing both real stressed speech and normal speech.
This paper is focused on investigation of psychological stress in speech signal using shapes of normalised glottal pulses. The pulses were estimated by two algorithms: the Direct Inverse Filtering and Iterative and Adaptive Inverse Filtering. Normalised glottal pulses are divided into opening and return phase, and a feature vector characterizing each glottal pulse is calculated for a series of n percentage interval in time domain. Each feature vector is created by parameters describing its return to opening phase ratio, namely chosen intervals, kurtosis, skewness, and area. Further, psychological stress is detected by feature vector and four different classifiers. Experimental results show, that the best accuracy approaching 95 % is reached with Gaussian Mixture Models classifier. All the best results were obtained regarding only the interval of 5 % from both phase durations, i.e. for and after pulse peak, where the most significant differences between normal and stressed speech in feature vector are occurred. Presented experiments were performed on our own speech database containing both real stressed speech and normal speech.
This paper is focused on investigation of psychological stress in speech signal using shapes of normalised glottal pulses. The pulses were estimated by two algorithms: the Direct Inverse Filtering and Iterative and Adaptive Inverse Filtering. Normalised glottal pulses are divided into opening and return phase, and a feature vector characterizing each glottal pulse is calculated for a series of n percentage interval in time domain. Each feature vector is created by parameters describing its return to opening phase ratio, namely chosen intervals, kurtosis, skewness, and area. Further, psychological stress is detected by feature vector and four different classifiers. Experimental results show, that the best accuracy approaching 95 % is reached with Gaussian Mixture Models classifier. All the best results were obtained regarding only the interval of 5 % from both phase durations, i.e. for and after pulse peak, where the most significant differences between normal and stressed speech in feature vector are occurred. Presented experiments were performed on our own speech database containing both real stressed speech and normal speech.
Description
Citation
Elektronika Ir Elektrotechnika. 2015, vol. 21, issue 5, p. 59-63.
http://www.eejournal.ktu.lt/index.php/elt/article/view/13336
http://www.eejournal.ktu.lt/index.php/elt/article/view/13336
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0003-3973-3626 