Hledání nových cest v rozpoznávání řečníka založeného na neuronových sítích

Loading...
Thumbnail Image
Date
Authors
Sova, Damián
ORCID
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Keďže zadanie tejto práce je veľmi široké, tak sa bolo treba sústrediť len na určitú sféru. Nakoniec, cieľom tejto práce je aplikovať optimalizačnú metódu Stochastického Spriemerovania Váh do tréningového procesu Hlbokej Neurónovej Siete. Po predstavení potrebných teoretických vedomostí v prvej časti práce, nasleduje druhá časť s priebehmi jednotlivých experimentov. V teoretickej časti je dôraz kladený hlavne na objasnenie celého životného cyklu trénovacieho a vyhodnocovacieho procesu, vrátane popisu jednotlivých komponentov. Praktická časť poskytuje podrobný pohľad na každý experiment, ktorých cieľom je demonštrovať dosiahnuteľnosť zvýšenia výkonnosti systému rozpoznávania rečníka. Celkové zlepšenie výkonu sa podarilo dosiahnuť postupným aplikovaním rôznych tréningových konfigurácií, v ktorých sa zohľadňujú skúsenosti z predchádzajúcich experimentov. Kľúčovou zložkou úspešného Stochastického Spriemerovania Váh v experimentoch bola dostatočne vysoká konštantná hodnota Miery Učenia s aplikovaným postupným prechodom alebo Cyklický priebeh Miery Učenia.
Since the assignment of this work is very broad, it was necessary to focus only on a certain area. In the end, this work aims to apply the Stochastic Weight Averaging optimization method to the training process of the Deep Neural Network. After presenting the necessary theoretical knowledge in the first part of the work, the second part with the experiments courses follows. In the theoretical part, the main focus is on presenting the complete lifecycle of the training and evaluation process, including a description of each component. The practical part provides a detailed look at each experiment, intended to demonstrate the effectiveness of the overall speaker recognition system's performance enhancement. The overall performance improvement is achieved by gradually applying various training configurations where the experience from previous experiments is taken into account. The key ingredient to the successful Stochastic Weight Averaging in the experiments was a sufficiently high Learning Rate value with the successive transition applied or Cyclic course of the Learning Rate.
Description
Citation
SOVA, D. Hledání nových cest v rozpoznávání řečníka založeného na neuronových sítích [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2022.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Informační technologie
Comittee
prof. Dr. Ing. Jan Černocký (předseda) doc. Ing. Jiří Jaroš, Ph.D. (místopředseda) Ing. Vladimír Bartík, Ph.D. (člen) doc. RNDr. Milan Češka, Ph.D. (člen) Ing. Filip Orság, Ph.D. (člen)
Date of acceptance
2022-06-15
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A. Otázky u obhajoby: Jaký je rozdíl mezi experimentem 3 a 4.3? Kdybyste pracoval na této práci ještě rok, co by byly další kroky, kterými byste zlepšil systém?
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO