A New Formulation of Maxwell’s Equations

dc.contributor.authorFialová, Simonacs
dc.contributor.authorPochylý, Františekcs
dc.coverage.issue5cs
dc.coverage.volume13cs
dc.date.issued2021-05-12cs
dc.description.abstractIn this paper, new forms of Maxwell’s equations in vector and scalar variants are presented. The new forms are based on the use of Gauss’s theorem for magnetic induction and electrical induction. The equations are formulated in both differential and integral forms. In particular, the new forms of the equations relate to the non-stationary expressions and their integral identities. The indicated methodology enables a thorough analysis of non-stationary boundary conditions on the behavior of electromagnetic fields in multiple continuous regions. It can be used both for qualitative analysis and in numerical methods (control volume method) and optimization. The last Section introduces an application to equations of magnetic fluid in both differential and integral forms.en
dc.description.abstractIn this paper, new forms of Maxwell’s equations in vector and scalar variants are presented. The new forms are based on the use of Gauss’s theorem for magnetic induction and electrical induction. The equations are formulated in both differential and integral forms. In particular, the new forms of the equations relate to the non-stationary expressions and their integral identities. The indicated methodology enables a thorough analysis of non-stationary boundary conditions on the behavior of electromagnetic fields in multiple continuous regions. It can be used both for qualitative analysis and in numerical methods (control volume method) and optimization. The last Section introduces an application to equations of magnetic fluid in both differential and integral forms.en
dc.formattextcs
dc.format.extent868-868cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSymmetry-Basel. 2021, vol. 13, issue 5, p. 868-868.en
dc.identifier.doi10.3390/sym13050868cs
dc.identifier.issn2073-8994cs
dc.identifier.orcid0000-0002-8776-4219cs
dc.identifier.orcid0000-0001-6408-1960cs
dc.identifier.other171551cs
dc.identifier.researcheridR-4959-2017cs
dc.identifier.researcheridD-9404-2018cs
dc.identifier.scopus54943181000cs
dc.identifier.scopus8582621100cs
dc.identifier.urihttp://hdl.handle.net/11012/196763
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofSymmetry-Baselcs
dc.relation.urihttps://www.mdpi.com/2073-8994/13/5/868cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2073-8994/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMaxwell’s equationsen
dc.subjectdivergence theoremen
dc.subjectintegral formen
dc.subjectmagnetismen
dc.subjectoptimizationen
dc.subjectanalysisen
dc.subjectMaxwell’s equations
dc.subjectdivergence theorem
dc.subjectintegral form
dc.subjectmagnetism
dc.subjectoptimization
dc.subjectanalysis
dc.titleA New Formulation of Maxwell’s Equationsen
dc.title.alternativeA New Formulation of Maxwell’s Equationsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-171551en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:52:22en
sync.item.modts2025.10.14 10:37:37en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Energetický ústavcs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
symmetry1300868v2.pdf
Size:
469.56 KB
Format:
Adobe Portable Document Format
Description:
symmetry1300868v2.pdf