A New Formulation of Maxwell’s Equations

Loading...
Thumbnail Image

Authors

Fialová, Simona
Pochylý, František

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

In this paper, new forms of Maxwell’s equations in vector and scalar variants are presented. The new forms are based on the use of Gauss’s theorem for magnetic induction and electrical induction. The equations are formulated in both differential and integral forms. In particular, the new forms of the equations relate to the non-stationary expressions and their integral identities. The indicated methodology enables a thorough analysis of non-stationary boundary conditions on the behavior of electromagnetic fields in multiple continuous regions. It can be used both for qualitative analysis and in numerical methods (control volume method) and optimization. The last Section introduces an application to equations of magnetic fluid in both differential and integral forms.
In this paper, new forms of Maxwell’s equations in vector and scalar variants are presented. The new forms are based on the use of Gauss’s theorem for magnetic induction and electrical induction. The equations are formulated in both differential and integral forms. In particular, the new forms of the equations relate to the non-stationary expressions and their integral identities. The indicated methodology enables a thorough analysis of non-stationary boundary conditions on the behavior of electromagnetic fields in multiple continuous regions. It can be used both for qualitative analysis and in numerical methods (control volume method) and optimization. The last Section introduces an application to equations of magnetic fluid in both differential and integral forms.

Description

Citation

Symmetry-Basel. 2021, vol. 13, issue 5, p. 868-868.
https://www.mdpi.com/2073-8994/13/5/868

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO