Lattice-based Threshold Signature Optimization for RAM Constrained Devices

Loading...
Thumbnail Image
Date
2024
Authors
Shapoval, Vladyslav
Ricci, Sara
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
The DS2 scheme is a lattice-based (n, n)-threshold signature based on the standardized Dilithium signature. However, deploying DS2, as well as Dilithium, on microcontrollers is a challenge due to the memory limitations of these devices. While the decryption phase can be implemented relatively straightforwardly, the key generation and signing phases require the generation and manipulation of large matrices and vectors, which can quickly exhaust the available memory on the microcontroller. In this paper, we propose an optimization of the DS2 key generation and signing algorithms tailored for microcontrollers. Our approach focuses on minimizing memory consumption by generating large elements, such as the commitment key ck and the random commitment parameter r, on the fly from random and non-random seeds. This approach significantly reduces the overall size of the signature from 143 KB to less than 5 KB, depending on the number of signers involved. We also split the algorithms into two distinct components: a security-critical part and a non-security-critical part. The security-critical part contains operations that require secret knowledge and must be run on the microcontroller itself. Conversely, the non-critical part contains operations that do not require secret knowledge and can be performed on a connected, more powerful central host.
Description
Citation
Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers. s. 147-150. ISBN 978-80-214-6231-1
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
DOI
Citace PRO