Efect of Chemical Aggressive Media on the Flexural Properties of Cured-In-Place Pipes Supported by Microstructure Observation and Acoustic Emission

Loading...
Thumbnail Image

Authors

Hodul, Jakub
Majerová, Jana
Drochytka, Rostislav
Dvořák, Richard
Topolář, Libor
Pazdera, Luboš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The cured-in-place pipe (CIPP) method is currently the most frequently used approach for the renovation of piping without digging; this technology is suitable for pipes made from all types of material. The authors of this paper examined how chemical substances and increased temperature change samples of CIPP with vinyl-ester resin taken from a simulated installation. Changes were observed at several levels: visually via a digital optical microscope, through changes of short-term bending properties and by observation of the activity of the sample structure by means of acoustic emission (AE). Interdependencies among the observed parameters were examined, specifically, the cumulative number of hits (cnt)/deflection and flexural properties/mechanic wave velocity. The test results prove that after three weeks of immersion in a simulated aggressive environment that mirrors what may happen to CIPP in real conditions, short-term mechanical properties change. This is also proven by the results of the AE measurements. For clarity, the results include images from a digital optical microscope. In addition, this paper proves that CIPP samples have good resistance to the action of organic and inorganic acids and to increased temperatures. After three weeks of exposure to a temperature of 100 °C the CIPP flexural properties of the samples had even improved.
The cured-in-place pipe (CIPP) method is currently the most frequently used approach for the renovation of piping without digging; this technology is suitable for pipes made from all types of material. The authors of this paper examined how chemical substances and increased temperature change samples of CIPP with vinyl-ester resin taken from a simulated installation. Changes were observed at several levels: visually via a digital optical microscope, through changes of short-term bending properties and by observation of the activity of the sample structure by means of acoustic emission (AE). Interdependencies among the observed parameters were examined, specifically, the cumulative number of hits (cnt)/deflection and flexural properties/mechanic wave velocity. The test results prove that after three weeks of immersion in a simulated aggressive environment that mirrors what may happen to CIPP in real conditions, short-term mechanical properties change. This is also proven by the results of the AE measurements. For clarity, the results include images from a digital optical microscope. In addition, this paper proves that CIPP samples have good resistance to the action of organic and inorganic acids and to increased temperatures. After three weeks of exposure to a temperature of 100 °C the CIPP flexural properties of the samples had even improved.

Description

Citation

Materials. 2020, vol. 13, issue 14, p. 1-17.
https://www.mdpi.com/1996-1944/13/14/3051

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO