Deep Convolutional Neural Network Model For Classification Of Atrial Fibrillation
but.event.date | 23.04.2020 | cs |
but.event.title | Student EEICT 2020 | cs |
dc.contributor.author | Budíková, Barbora | |
dc.date.accessioned | 2021-07-15T11:17:20Z | |
dc.date.available | 2021-07-15T11:17:20Z | |
dc.date.issued | 2020 | cs |
dc.description.abstract | Atrial fibrillation is a very common heart pathology, which is usually detected from electrocardiogram (ECG). This article presents recognition of atrial fibrillation in ECG using deep convolutional neural network. Data used for training the network includes physiological ECG, atrial fibrillation and nine other pathologies. The detection is performed by algorithm in Python language and is being assessed by accuracy and F1 measure. | en |
dc.format | text | cs |
dc.format.extent | 208-211 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 208-211. ISBN 978-80-214-5867-3 | cs |
dc.identifier.isbn | 978-80-214-5867-3 | |
dc.identifier.uri | http://hdl.handle.net/11012/200560 | |
dc.language.iso | cs | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/EEICT2020 | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | ECG | en |
dc.subject | atrial fibrillation | en |
dc.subject | convolutional neural network | en |
dc.subject | detection | en |
dc.title | Deep Convolutional Neural Network Model For Classification Of Atrial Fibrillation | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 208-eeict_1.pdf
- Size:
- 716.02 KB
- Format:
- Adobe Portable Document Format
- Description: