Deep Convolutional Neural Network Model For Classification Of Atrial Fibrillation

Loading...
Thumbnail Image
Date
2020
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
Atrial fibrillation is a very common heart pathology, which is usually detected from electrocardiogram (ECG). This article presents recognition of atrial fibrillation in ECG using deep convolutional neural network. Data used for training the network includes physiological ECG, atrial fibrillation and nine other pathologies. The detection is performed by algorithm in Python language and is being assessed by accuracy and F1 measure.
Description
Citation
Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 208-211. ISBN 978-80-214-5867-3
https://conf.feec.vutbr.cz/eeict/EEICT2020
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
cs
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
DOI
Citace PRO