Block Algorithms for the Control of Adaptive Antenna Arrays

dc.contributor.authorTobes, Z.
dc.coverage.issue3cs
dc.coverage.volume4cs
dc.date.accessioned2016-05-06T11:46:20Z
dc.date.available2016-05-06T11:46:20Z
dc.date.issued1995-09cs
dc.description.abstractPresented paper deals with the reduction of computational requirements of gradient algorithms for the control of adaptive antenna arrays. Reduction of arithmetical complexity is reached here by the application of a block signal processing to adaptive algorithms. Block versions of the classical Least Mean Square (LMS) algorithm and the Simplified Kalman Filter (SKF) are described in this submission. Adaptation parameters of the presented algorithms are illustrated by results of computer simulations. The block SKF (BSKF) exhibits twice higher computational requirements than LMS, the same misadjustment as LMS and lower rate of convergence than LMS when transversal filters have great number of taps and when relatively high block length of BSKF is used.en
dc.formattextcs
dc.format.extent1-8cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 1995, vol. 4, č. 3, s. 1-8. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/58458
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/1995/95_03_01.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectleast mean squareen
dc.subjectsimplified Kalman filteren
dc.subjectSKFen
dc.subjectblock SKFen
dc.subjectBSKFen
dc.subjectLMSen
dc.titleBlock Algorithms for the Control of Adaptive Antenna Arraysen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
95_03_01.pdf
Size:
501.54 KB
Format:
Adobe Portable Document Format
Description:
Collections