Synthesis of high density sub-10 µm (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3-xCeO2 lead-free ceramics using a twostep sintering technique
Loading...
Date
Authors
Bijalwan, Vijay
Tofel, Pavel
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
TAYLOR & FRANCIS LTD
ORCID
Altmetrics
Abstract
(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-xCeO2, (BCZTCe) lead-free piezoelectric ceramics were processed conventionally using a two-step sintering technique. The results suggest that two-step sintering is an effective technique to acquire a high density (99%) homogeneous microstructure with sub-10 m grain size. The low CeO2 content (0.07 wt.%) facilitates good functional properties at low sintering conditions of T1 = 1400°C/30 min & T2 = 1275°C/4 h, in which d33 = 353 ± 7 pC/N, kp= 40%, r= 3393 ± 100, tan =0.039, TC = 96.5C, Pr = 11.45 C/cm2, EC = 2.32 kV/cm and a large strain of 0.18%. These results indicate that BCZTCe ceramics are a promising lead-free piezoelectric substitute for room temperature device applications.
(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-xCeO2, (BCZTCe) lead-free piezoelectric ceramics were processed conventionally using a two-step sintering technique. The results suggest that two-step sintering is an effective technique to acquire a high density (99%) homogeneous microstructure with sub-10 m grain size. The low CeO2 content (0.07 wt.%) facilitates good functional properties at low sintering conditions of T1 = 1400°C/30 min & T2 = 1275°C/4 h, in which d33 = 353 ± 7 pC/N, kp= 40%, r= 3393 ± 100, tan =0.039, TC = 96.5C, Pr = 11.45 C/cm2, EC = 2.32 kV/cm and a large strain of 0.18%. These results indicate that BCZTCe ceramics are a promising lead-free piezoelectric substitute for room temperature device applications.
(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-xCeO2, (BCZTCe) lead-free piezoelectric ceramics were processed conventionally using a two-step sintering technique. The results suggest that two-step sintering is an effective technique to acquire a high density (99%) homogeneous microstructure with sub-10 m grain size. The low CeO2 content (0.07 wt.%) facilitates good functional properties at low sintering conditions of T1 = 1400°C/30 min & T2 = 1275°C/4 h, in which d33 = 353 ± 7 pC/N, kp= 40%, r= 3393 ± 100, tan =0.039, TC = 96.5C, Pr = 11.45 C/cm2, EC = 2.32 kV/cm and a large strain of 0.18%. These results indicate that BCZTCe ceramics are a promising lead-free piezoelectric substitute for room temperature device applications.
Description
Keywords
Citation
Journal of Asian Ceramic Societies. 2019, vol. 7, issue 4, p. 1-8.
https://www.tandfonline.com/doi/full/10.1080/21870764.2019.1683954
https://www.tandfonline.com/doi/full/10.1080/21870764.2019.1683954
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-4779-7024 