Regression Trees and Random Forests for Predictions

dc.contributor.authorOberta, Dušan
dc.coverage.issue1-2cs
dc.coverage.volume9cs
dc.date.accessioned2025-06-23T09:53:10Z
dc.date.available2025-06-23T09:53:10Z
dc.date.issued2023cs
dc.description.abstractRegression trees are widely used in statistics to capture, not always trivial, relationships between predictors (i.e. independent variables) and a response variable (i.e. dependent variable). They can be used in a variety of situations where other statistical tools are not suitable, even in situations where the number of predictors is greater than the number of observations in the set of training data. Random forests generalize the concept of regression trees to reduce variance and improve stability of simple regression trees. Apart from the classical regression trees based on the least squares method, the concept of maximum likelihood With the assumption of gamma distribution of the response variable is described and derived by the author. Compared to literature found, slightly different proofs of theorems regarding pruning of regression trees are offered, as well as a thorough derivation of confidence intervals for the expected value of the response variable is offered as own work of the author. Introduction to the concept of random forests is covered in the last part of the article.cs
dc.formattextcs
dc.format.extent113-136cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationKvaternion. 2023 vol. 9, č. 1-2, s. 113-136. ISSN 1805-1332cs
dc.identifier.issn1805-1332
dc.identifier.urihttps://hdl.handle.net/11012/254758
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofKvaternioncs
dc.relation.urihttp://kvaternion.fme.vutbr.cz/2023/kv23_1-2_oberta_web.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.subjectRegression trees
dc.subjectleast squares
dc.subjectmaximum likelihood estimation
dc.subjectconfidence intervals
dc.subjectk-fold cross-validation
dc.subjectbagging
dc.subjectbootstrapping
dc.subjectrandom forests
dc.titleRegression Trees and Random Forests for Predictionscs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
kv23_1-2_oberta_web.pdf
Size:
439.62 KB
Format:
Adobe Portable Document Format
Description:
Collections