Geometrické řízení neholonomních systémů

but.committeedoc. Ing. Luděk Nechvátal, Ph.D. (předseda) prof. RNDr. Josef Šlapal, CSc. (místopředseda) doc. RNDr. Jiří Tomáš, Dr. (člen) doc. Ing. Jiří Šremr, Ph.D. (člen) prof. RNDr. Miloslav Druckmüller, CSc. (člen) prof. Bruno Rubino (člen) prof. Giuli Massimiliano (člen) prof. Lattanzio Corrado (člen)cs
but.defenceThe student introduced his diploma thesis to the committee members and explained the fundamentals of his topic called Geometric control of nonholonomic systems. The supervisor read the review and the opponent read the review, too. The student answered the opponent's questions well.cs
but.jazykangličtina (English)
but.programApplied and Interdisciplinary Mathematicscs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorNávrat, Alešen
dc.contributor.authorRamasubramaniyan, Sri Ram Prasathen
dc.contributor.refereeVašík, Petren
dc.date.created2023cs
dc.description.abstractThis thesis focuses on a mathematical model for a three-body space robot with the objective of reconfiguring its structure using only internal joint torques. The aim is to minimize fuel consumption and achieve efficient reconfiguration without relying on external actuators. The system exhibits one holonomic and non-holonomic constraint, making the analysis and control design challenging. To address the complexity of the non-holonomic system, the local behavior is studied through the nilpotent approximation. The thesis emphasizes understanding the nilpotent approximation and constructing the nilpotent system of the space robot using algebraic coordinates, along with transforming them into exponential coordinates within the Maple environment.en
dc.description.abstractThis thesis focuses on a mathematical model for a three-body space robot with the objective of reconfiguring its structure using only internal joint torques. The aim is to minimize fuel consumption and achieve efficient reconfiguration without relying on external actuators. The system exhibits one holonomic and non-holonomic constraint, making the analysis and control design challenging. To address the complexity of the non-holonomic system, the local behavior is studied through the nilpotent approximation. The thesis emphasizes understanding the nilpotent approximation and constructing the nilpotent system of the space robot using algebraic coordinates, along with transforming them into exponential coordinates within the Maple environment.cs
dc.description.markBcs
dc.identifier.citationRAMASUBRAMANIYAN, S. Geometrické řízení neholonomních systémů [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2023.cs
dc.identifier.other150035cs
dc.identifier.urihttp://hdl.handle.net/11012/212424
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectThree-body Space Roboten
dc.subjectNon-Holonomic Systemen
dc.subjectNilpotent Systemen
dc.subjectNilpotent Approximationen
dc.subjectAlgebraic Coordinatesen
dc.subjectExponential Coordinates.en
dc.subjectThree-body Space Robotcs
dc.subjectNon-Holonomic Systemcs
dc.subjectNilpotent Systemcs
dc.subjectNilpotent Approximationcs
dc.subjectAlgebraic Coordinatescs
dc.subjectExponential Coordinates.cs
dc.titleGeometrické řízení neholonomních systémůen
dc.title.alternativeGeometric control of nonholonomic systemscs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2023-06-14cs
dcterms.modified2023-06-16-09:16:18cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid150035en
sync.item.dbtypeZPen
sync.item.insts2025.03.27 10:43:21en
sync.item.modts2025.01.17 13:36:13en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.levelInženýrskýcs
thesis.nameIng.cs
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
2.41 MB
Format:
Adobe Portable Document Format
Description:
final-thesis.pdf
Loading...
Thumbnail Image
Name:
review_150035.html
Size:
10.19 KB
Format:
Hypertext Markup Language
Description:
file review_150035.html
Collections