Geometrické řízení neholonomních systémů
Loading...
Date
Authors
Ramasubramaniyan, Sri Ram Prasath
ORCID
Advisor
Referee
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta strojního inženýrství
Abstract
This thesis focuses on a mathematical model for a three-body space robot with the objective of reconfiguring its structure using only internal joint torques. The aim is to minimize fuel consumption and achieve efficient reconfiguration without relying on external actuators. The system exhibits one holonomic and non-holonomic constraint, making the analysis and control design challenging. To address the complexity of the non-holonomic system, the local behavior is studied through the nilpotent approximation. The thesis emphasizes understanding the nilpotent approximation and constructing the nilpotent system of the space robot using algebraic coordinates, along with transforming them into exponential coordinates within the Maple environment.
This thesis focuses on a mathematical model for a three-body space robot with the objective of reconfiguring its structure using only internal joint torques. The aim is to minimize fuel consumption and achieve efficient reconfiguration without relying on external actuators. The system exhibits one holonomic and non-holonomic constraint, making the analysis and control design challenging. To address the complexity of the non-holonomic system, the local behavior is studied through the nilpotent approximation. The thesis emphasizes understanding the nilpotent approximation and constructing the nilpotent system of the space robot using algebraic coordinates, along with transforming them into exponential coordinates within the Maple environment.
This thesis focuses on a mathematical model for a three-body space robot with the objective of reconfiguring its structure using only internal joint torques. The aim is to minimize fuel consumption and achieve efficient reconfiguration without relying on external actuators. The system exhibits one holonomic and non-holonomic constraint, making the analysis and control design challenging. To address the complexity of the non-holonomic system, the local behavior is studied through the nilpotent approximation. The thesis emphasizes understanding the nilpotent approximation and constructing the nilpotent system of the space robot using algebraic coordinates, along with transforming them into exponential coordinates within the Maple environment.
Description
Citation
RAMASUBRAMANIYAN, S. Geometrické řízení neholonomních systémů [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2023.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
bez specializace
Comittee
doc. Ing. Luděk Nechvátal, Ph.D. (předseda)
prof. RNDr. Josef Šlapal, CSc. (místopředseda)
doc. RNDr. Jiří Tomáš, Dr. (člen)
doc. Ing. Jiří Šremr, Ph.D. (člen)
prof. RNDr. Miloslav Druckmüller, CSc. (člen)
prof. Bruno Rubino (člen)
prof. Giuli Massimiliano (člen)
prof. Lattanzio Corrado (člen)
Date of acceptance
2023-06-14
Defence
The student introduced his diploma thesis to the committee members and explained the fundamentals of his topic called Geometric control of nonholonomic systems.
The supervisor read the review and the opponent read the review, too.
The student answered the opponent's questions well.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení