Active Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms

dc.contributor.authorPeng, Xiacs
dc.contributor.authorOral, Çaatay Mertcs
dc.contributor.authorUrso, Mariocs
dc.contributor.authorUssia, Martinacs
dc.contributor.authorPumera, Martincs
dc.coverage.issue2cs
dc.coverage.volume17cs
dc.date.accessioned2025-07-31T11:56:03Z
dc.date.available2025-07-31T11:56:03Z
dc.date.issued2025-01-02cs
dc.description.abstractBacterial biofilms are complex multicellular communities that adhere firmly to solid surfaces. They are widely recognized as major threats to human health, contributing to issues such as persistent infections on medical implants and severe contamination in drinking water systems. As a potential treatment for biofilms, this work proposes two strategies: (i) light-driven ZnFe2O4 (ZFO)/Pt microrobots for photodegradation of biofilms and (ii) magnetically driven ZFO microrobots for mechanical removal of biofilms from surfaces. Magnetically driven ZFO microrobots were realized by synthesizing ZFO microspheres through a low-cost and large-scale hydrothermal synthesis, followed by a calcination process. Then, a Pt layer was deposited on the surface of the ZFO microspheres to break their symmetry, resulting in self-propelled light-driven Janus ZFO/Pt microrobots. Light-driven ZFO/Pt microrobots exhibited active locomotion under UV light irradiation and controllable motion in terms of "stop and go" features. Magnetically driven ZFO microrobots were capable of maneuvering precisely when subjected to an external rotating magnetic field. These microrobots could eliminate Gram-negative Escherichia coli (E. coli) biofilms through photogenerated reactive oxygen species (ROS)-related antibacterial properties in combination with their light-powered active locomotion, accelerating the mass transfer to remove biofilms more effectively in water. Moreover, the actuation of magnetically driven ZFO microrobots allowed for the physical disruption of biofilms, which represents a reliable alternative to photocatalysis for the removal of strongly anchored biofilms in confined spaces. With their versatile characteristics, the envisioned microrobots highlight a significant potential for biofilm removal with high efficacy in both open and confined spaces, such as the pipelines of industrial plants.en
dc.formattextcs
dc.format.extent3608-3619cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationACS applied materials & interfaces. 2025, vol. 17, issue 2, p. 3608-3619.en
dc.identifier.doi10.1021/acsami.4c18360cs
dc.identifier.issn1944-8252cs
dc.identifier.orcid0000-0001-5220-2104cs
dc.identifier.orcid0000-0001-7993-8138cs
dc.identifier.orcid0000-0002-3248-6725cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other197902cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.scopus57203728973cs
dc.identifier.urihttps://hdl.handle.net/11012/255370
dc.language.isoencs
dc.publisherAMER CHEMICAL SOCcs
dc.relation.ispartofACS applied materials & interfacescs
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acsami.4c18360cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1944-8252/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmicromotorsen
dc.subjectmicrorobotsen
dc.subjectphotocatalysisen
dc.subjectmagnetically drivenen
dc.subjectbiofilmen
dc.subjectcollective motionen
dc.titleActive Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanismsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197902en
sync.item.dbtypeVAVen
sync.item.insts2025.07.31 13:56:03en
sync.item.modts2025.07.31 13:32:53en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pengetal2025activemicrorobotsfordualremovalofbiofilmsviachemicalandphysicalmechanisms.pdf
Size:
8.72 MB
Format:
Adobe Portable Document Format
Description:
file pengetal2025activemicrorobotsfordualremovalofbiofilmsviachemicalandphysicalmechanisms.pdf