The first solid-state route to luminescent Au(I)-glutathionate and its pH-controlled transformation into ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters for application in cancer radiotheraphy

dc.contributor.authorDeák, Andréacs
dc.contributor.authorSzabó, Pál T.cs
dc.contributor.authorBednaříková, Vendulacs
dc.contributor.authorCihlář, Jaroslavcs
dc.contributor.authorDemeter, Attilacs
dc.contributor.authorRemešová, Michaelacs
dc.contributor.authorColacino, Evelinacs
dc.contributor.authorČelko, Ladislavcs
dc.coverage.issue6cs
dc.coverage.volume11cs
dc.date.accessioned2023-10-31T11:58:13Z
dc.date.available2023-10-31T11:58:13Z
dc.date.issued2023-06-05cs
dc.description.abstractThere is still a need for synthetic approaches that are much faster, easier to scale up, more robust and efficient for generating gold(I)-thiolates that can be easily converted into gold-thiolate nanoclusters. Mechanochemical methods can offer significantly reduced reaction times, increased yields and straightforward recovery of the product, compared to the solution-based reactions. For the first time, a new simple, rapid and efficient mechanochemical redox method in a ball-mill was developed to produce the highly luminescent, pH-responsive Au(I)-glutathionate, [Au(SG)]( n ). The efficient productivity of the mechanochemical redox reaction afforded orange luminescent [Au(SG)]( n ) in isolable amounts (mg scale), usually not achieved by more conventional methods in solution. Then, ultrasmall oligomeric Au10-12(SG)(10-12) nanoclusters were prepared by pH-triggered dissociation of [Au(SG)]( n ). The pH-stimulated dissociation of the Au(I)-glutathionate complex provides a time-efficient synthesis of oligomeric Au10-12(SG)(10-12) nanoclusters, it avoids high-temperature heating or the addition of harmful reducing agent (e.g., carbon monoxide). Therefore, we present herein a new and eco-friendly methodology to access oligomeric glutathione-based gold nanoclusters, already finding applications in biomedical field as efficient radiosensitizers in cancer radiotherapy.en
dc.formattextcs
dc.format.extent11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationFrontiers in Chemistry. 2023, vol. 11, issue 6, 11 p.en
dc.identifier.doi10.3389/fchem.2023.1178225cs
dc.identifier.issn2296-2646cs
dc.identifier.orcid0000-0003-0672-7481cs
dc.identifier.orcid0000-0002-3322-8584cs
dc.identifier.orcid0000-0003-1678-5618cs
dc.identifier.orcid0000-0003-0264-3483cs
dc.identifier.other185020cs
dc.identifier.researcheridD-7941-2012cs
dc.identifier.researcheridAAA-8935-2021cs
dc.identifier.researcheridD-6870-2012cs
dc.identifier.scopus36152113800cs
dc.identifier.scopus56177144000cs
dc.identifier.scopus25621022900cs
dc.identifier.urihttp://hdl.handle.net/11012/214436
dc.language.isoencs
dc.publisherFrontiers Mediacs
dc.relation.ispartofFrontiers in Chemistrycs
dc.relation.urihttps://www.frontiersin.org/articles/10.3389/fchem.2023.1178225/fullcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2296-2646/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbioactive moleculesen
dc.subjectgold nanoclusteren
dc.subjectgold thiolateen
dc.subjectglutathioneen
dc.subjectmechanochemistryen
dc.titleThe first solid-state route to luminescent Au(I)-glutathionate and its pH-controlled transformation into ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters for application in cancer radiotheraphyen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/LM/LM2023051cs
sync.item.dbidVAV-185020en
sync.item.dbtypeVAVen
sync.item.insts2023.10.31 17:00:28en
sync.item.modts2023.10.31 16:15:37en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé povlakycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fchem111178225.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format
Description:
fchem111178225.pdf