Semi-supervised deep learning approach to break common CAPTCHAs
dc.contributor.author | Boštík, Ondřej | cs |
dc.contributor.author | Horák, Karel | cs |
dc.contributor.author | Kratochvíla, Lukáš | cs |
dc.contributor.author | Zemčík, Tomáš | cs |
dc.contributor.author | Bilík, Šimon | cs |
dc.coverage.issue | 20 | cs |
dc.coverage.volume | 33 | cs |
dc.date.issued | 2021-04-12 | cs |
dc.description.abstract | Manual data annotation is a time consuming activity. A novel strategy for automatic training of the CAPTCHA breaking system with no manual dataset creation is presented in this paper. We demonstrate the feasibility of the attack against a text-based CAPTCHA scheme utilizing similar network infrastructure used for Denial of Service attacks. The main goal of our research is to present a possible vulnerability in CAPTCHA systems when combining the brute-force attack with transfer learning. The classification step utilizes a simple convolutional neural network with 15 layers. Training stage uses automatically prepared dataset created without any human intervention and transfer learning for fine-tuning the deep neural network classifier. The designed system for breaking text-based CAPTCHAs achieved 80% classification accuracy after 6 fine-tuning steps for a 5 digit text-based CAPTCHA system. The results presented in this paper suggest, that even the simple attack with a large number of attacking computers can be an effective alternative to current CAPTCHA breaking systems. | en |
dc.format | text | cs |
dc.format.extent | 13333-13343 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | NEURAL COMPUTING & APPLICATIONS. 2021, vol. 33, issue 20, p. 13333-13343. | en |
dc.identifier.doi | 10.1007/s00521-021-05957-0 | cs |
dc.identifier.issn | 0941-0643 | cs |
dc.identifier.orcid | 0000-0002-7856-2084 | cs |
dc.identifier.orcid | 0000-0002-2280-3029 | cs |
dc.identifier.orcid | 0000-0001-8425-323X | cs |
dc.identifier.orcid | 0000-0003-4363-4313 | cs |
dc.identifier.orcid | 0000-0001-8797-7700 | cs |
dc.identifier.other | 170906 | cs |
dc.identifier.researcherid | JEP-7714-2023 | cs |
dc.identifier.scopus | 57222421244 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/203005 | |
dc.language.iso | en | cs |
dc.publisher | Springer | cs |
dc.relation.ispartof | NEURAL COMPUTING & APPLICATIONS | cs |
dc.relation.uri | https://link.springer.com/article/10.1007%2Fs00521-021-05957-0 | cs |
dc.rights | (C) Springer | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0941-0643/ | cs |
dc.subject | CAPTCHA | en |
dc.subject | Semi-supervised learning | en |
dc.subject | Convolutional Neural Networks | en |
dc.title | Semi-supervised deep learning approach to break common CAPTCHAs | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | acceptedVersion | en |
sync.item.dbid | VAV-170906 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:39:30 | en |
sync.item.modts | 2025.01.17 15:21:58 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí techniky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 05957_accepted.pdf
- Size:
- 371.06 KB
- Format:
- Adobe Portable Document Format
- Description:
- 05957_accepted.pdf