Image Super-Resolution via Wavelet Feature Extraction and Sparse Representation
dc.contributor.author | Alvarez-Ramos, Valentin | |
dc.contributor.author | Ponomaryov, Volodymyr | |
dc.contributor.author | Sadovnychiy, Sergiy | |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 27 | cs |
dc.date.accessioned | 2018-06-18T12:49:20Z | |
dc.date.available | 2018-06-18T12:49:20Z | |
dc.date.issued | 2018-06 | cs |
dc.description.abstract | This paper proposes a novel Super-Resolution (SR) technique based on wavelet feature extraction and sparse representation. First, the Low-Resolution (LR) image is interpolated employing the Lanczos operation. Then, the image is decomposed into sub-bands (LL, LH, HL and HH) via Discrete Wavelet Transform (DWT). Next, the LH, HL and HH sub-bands are interpolated employing the Lanczos interpolator. Principal Component Analysis (PCA) is used to reduce and to obtain the most relevant features information from the set of interpolated sub-bands. Overlapping patches are taken from the features obtained via PCA. For each patch, the sparse representation is computed using the Orthogonal Matching Pursuit (OMP) algorithm and the LR dictionary. Subsequently, this sparse representation is used to reconstruct a High-Resolution (HR) patch employing the HR dictionary and it is added to the LR image. By applying the quality objective criteria PSNR and SSIM, the novel technique has been evaluated demonstrating the superiority of the novel framework against state-of-the-art techniques. | en |
dc.format | text | cs |
dc.format.extent | 602-609 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Radioengineering. 2018 vol. 27, č. 2, s. 602-609. ISSN 1210-2512 | cs |
dc.identifier.doi | 10.13164/re.2018.0602 | en |
dc.identifier.issn | 1210-2512 | |
dc.identifier.uri | http://hdl.handle.net/11012/83045 | |
dc.language.iso | en | cs |
dc.publisher | Společnost pro radioelektronické inženýrství | cs |
dc.relation.ispartof | Radioengineering | cs |
dc.relation.uri | https://www.radioeng.cz/fulltexts/2018/18_02_0602_0609.pdf | cs |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.access | openAccess | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Super-resolution | en |
dc.subject | sparse representation | en |
dc.subject | wavelet | en |
dc.subject | features | en |
dc.subject | interpolation | en |
dc.subject | neural networks | en |
dc.title | Image Super-Resolution via Wavelet Feature Extraction and Sparse Representation | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.faculty | Fakulta eletrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- str_0602-0609.pdf
- Size:
- 3.16 MB
- Format:
- Adobe Portable Document Format
- Description: