3D-Printed Nanostructured Copper Substrate Boosts the Sodiated Capability and Stability of Antimony Anode for Sodium-Ion Batteries

dc.contributor.authorGao, Huics
dc.contributor.authorGao, Wanlics
dc.contributor.authorPumera, Martincs
dc.coverage.issue19cs
dc.coverage.volume34cs
dc.date.accessioned2024-10-14T09:04:05Z
dc.date.available2024-10-14T09:04:05Z
dc.date.issued2024-05-01cs
dc.description.abstractSodium-ion batteries (SIBs) represent a viable substitute to lithium-ion batteries due to their affordability and resource abundance. For SIBs, antimony (Sb) shows potential as anode material but is impeded by the high volumetric variations. Here the challenges of Sb sodium storage by introducing the nanostructured Cu substrate for enhanced Sb adhesion and morphology optimization is addressed, which is realized by fused deposition modeling (FDM) printing of Cu substrate, subsequent high-temperature sintering, and electrodeposition of Sb. In SIBs, the Sb deposited on three dimensional (3D) printed Cu substrate performs improved cycling stability compared with that of Sb@Cu with commercial Cu foil substrate, which can be attributed to the nanostructure of the 3D-Cu substrate. Such architecture of 3D-Cu induces the generation of pine-leaf-like Sb clusters to promote stability and kinetics, and it aids the adhesion between the Sb cluster and 3D-Cu substrate for preventing the Sb detachment and restructuring the Sb cluster to the robust porous ligament-channel Sb framework. The morphology evolution, (de)sodiation mechanism, and gas evolution are explored by ex situ scanning electron microscope, operando X-ray diffraction, and operando differential electrochemical mass spectrometry separately. The developed Sb@3D-Cu anode offers a flexible pathway for constructing 3D-printed self-supported electrodes for SIBs. The FDM 3D printing utilizing metal-polymer filaments is emerging for fabricating nanostructured metals. By introducing this technique, a highly improved Cu current collector (3D-Cu) compared with commercial Cu foil, is obtained and significantly boosts the sodiated performance of Sb anode. This enlarges FDM 3D-printing applications in SIBs.imageen
dc.formattextcs
dc.format.extent9cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced functional materials. 2024, vol. 34, issue 19, 9 p.en
dc.identifier.doi10.1002/adfm.202310563cs
dc.identifier.issn1616-3028cs
dc.identifier.orcid0000-0002-8352-9836cs
dc.identifier.orcid0000-0001-7879-2253cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other188948cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttps://hdl.handle.net/11012/249530
dc.language.isoencs
dc.publisherWiley-VCHcs
dc.relation.ispartofAdvanced functional materialscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202310563cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1616-3028/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectadditive manufacturingen
dc.subjectanodeen
dc.subjectfused deposition modelingen
dc.subjectoperando X-ray diffractionen
dc.subjectsodium ion batteryen
dc.title3D-Printed Nanostructured Copper Substrate Boosts the Sodiated Capability and Stability of Antimony Anode for Sodium-Ion Batteriesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-188948en
sync.item.dbtypeVAVen
sync.item.insts2024.10.14 11:04:05en
sync.item.modts2024.09.20 09:32:08en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adv Funct Materials2024Gao.pdf
Size:
7.19 MB
Format:
Adobe Portable Document Format
Description:
file Adv Funct Materials2024Gao.pdf