Algorithm for Detection of Positive and Negative Text

Loading...
Thumbnail Image
Date
2016
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
In the present, obtaining and sorting knowledge from data produced by various sources requires significant effort which is not ensured easily by a human, meaning machine processing is taking place. Purpose of this work was to create a system capable of positive and negative emotion detection from text along with evaluation of its performance. System allows training with use of large amount of data (known as Big Data), exploiting Spark library. Classificator model was created with use of Support Vector Machines. Highest achieved accuracy is 78,05% for Czech, 79,73% for German and 91,88% for English.
Description
Citation
Proceedings of the 22nd Conference STUDENT EEICT 2016. s. 161-163. ISBN 978-80-214-5350-0
http://www.feec.vutbr.cz/EEICT/
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
cs
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
DOI
Citace PRO