A Reinforcement Learning-based Intelligent Learning Method for Anti-active Jamming in Frequency Agility Radar

Loading...
Thumbnail Image

Authors

Wei, J.
Yu, L.
Wei, Y.
Xu, R.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Radioengineering society

ORCID

Altmetrics

Abstract

Active jamming's flexibility and variability pose significant challenges for frequency-agility radar (FAR) detection, as it can continuously intercept and retransmit radar signals to suppress or deceive the radar. To tackle this, we propose an intelligent learning method for FAR based on reinforcement learning (RL), integrating signal processing with compressed sensing (CS). We introduce an inter-pulse carrier-frequency hopping combined with intra-pulse sub-frequency coding (IPCFH-IPSFC) signal model to address time-domain discontinuities caused by active jamming, enabling effective mutual masking of pulses through agile waveform parameters. We develop jamming signal models and design four jamming strategies based on two common types of active jamming, providing essential data for the FAR intelligent learning method. To enhance FAR’s adaptive anti-jamming and target detection performance, we propose an RL-based intelligent learning model. This model includes five submodules: signal processing, anti-jamming evaluation, target detection, optimization constraint design, and optimization algorithm design. We apply a proximal policy optimization combined with a generative pre-trained transformer (PPO-GPT) to solve this model, allowing FAR to adaptively learn jamming strategies and optimize IPCFH-IPSFC waveform parameters for effective anti-jamming. Simulation results confirm that our method achieves robust performance and rapid convergence, finding optimal anti-jamming strategies in just 215 training iterations. The FAR effectively counteracts jamming while accurately estimating target range and velocity.

Description

Citation

Radioengineering. 2024 vol. 33, iss. 4, s. 681-703. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2024/24_04_0681_0703.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO