Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling

Loading...
Thumbnail Image

Authors

Ravaszová, Simona
Dvořák, Karel
Vaičiukynien, Danute
Sisol, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

This article deals with the development of an alternative method for determining the grindability index of fine-grained materials. This method is inspired by the commercially used VTI method (also known as RTI after the Russian Thermal Energy Institute), which was widely used in Central and Eastern Europe in coal grinding. The disadvantage of the VTI method is that it uses a specific grinding device that otherwise has no other use and nowadays is no longer commonly available. Through the new method, high-energy grinding was performed using a commercially available planetary mill on silicate materials such as limestone, feldspar, corundum, and quartz. The effectiveness of the method was verified on clinker as a representative of widely used materials. The deviation between the grindability index calculated by the origin VTI method and the new developed method was on average approximately 8%; in the case of clinker grinding, it was only 3%. The results showed that the VTI method could be replaced by a new method that uses a modern available planetary mill and laser granulometry to determine the grindability index. The result is a new classification of materials according to their grindability indexes, which is based on the original VTI method.
This article deals with the development of an alternative method for determining the grindability index of fine-grained materials. This method is inspired by the commercially used VTI method (also known as RTI after the Russian Thermal Energy Institute), which was widely used in Central and Eastern Europe in coal grinding. The disadvantage of the VTI method is that it uses a specific grinding device that otherwise has no other use and nowadays is no longer commonly available. Through the new method, high-energy grinding was performed using a commercially available planetary mill on silicate materials such as limestone, feldspar, corundum, and quartz. The effectiveness of the method was verified on clinker as a representative of widely used materials. The deviation between the grindability index calculated by the origin VTI method and the new developed method was on average approximately 8%; in the case of clinker grinding, it was only 3%. The results showed that the VTI method could be replaced by a new method that uses a modern available planetary mill and laser granulometry to determine the grindability index. The result is a new classification of materials according to their grindability indexes, which is based on the original VTI method.

Description

Citation

Materials. 2022, vol. 15, issue 22, p. 1-17.
https://www.mdpi.com/1996-1944/15/22/8085

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO