Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation

dc.contributor.authorPaštěka, Richardcs
dc.contributor.authorForjan, Mathiascs
dc.contributor.authorSauermann, Stefancs
dc.contributor.authorDrauschke, Andreascs
dc.coverage.issue9cs
dc.coverage.volume9cs
dc.date.accessioned2020-12-02T11:55:26Z
dc.date.available2020-12-02T11:55:26Z
dc.date.issued2019-12-24cs
dc.description.abstractSimulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (n(Total) = 3273) with highest standard deviation vertical bar 3 sigma vertical bar for both, simplified lung equivalents (mu(V) = 23.98 +/- 1.04 l/min, mu(P) = -0.78 +/- 0.63 hPa) and primed porcine lungs (mu(V) = 18.87 +/- 2.49 l/min, mu(P) = -21.13 +/- 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.en
dc.formattextcs
dc.format.extent1-12cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationScientific Reports. 2019, vol. 9, issue 9, p. 1-12.en
dc.identifier.doi10.1038/s41598-019-56176-6cs
dc.identifier.issn2045-2322cs
dc.identifier.other162245cs
dc.identifier.urihttp://hdl.handle.net/11012/195736
dc.language.isoencs
dc.publisherNATURE PUBLISHING GROUPcs
dc.relation.ispartofScientific Reportscs
dc.relation.urihttps://www.nature.com/articles/s41598-019-56176-6#article-infocs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2045-2322/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectrespiration simulation; biomedical electromechanical; systemsen
dc.subjectalternative to animal testingen
dc.subjectlung simulationen
dc.subjectprimed porcine lungsen
dc.subjectbiomedical engineering educationen
dc.titleElectro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-162245en
sync.item.dbtypeVAVen
sync.item.insts2020.12.02 12:55:25en
sync.item.modts2020.12.02 12:14:10en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrstvícs
thesis.grantorVysoké učení technické v Brně. . Fachhochschule Technikum Wiencs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598019561766.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format
Description:
s41598019561766.pdf