Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation
dc.contributor.author | Paštěka, Richard | cs |
dc.contributor.author | Forjan, Mathias | cs |
dc.contributor.author | Sauermann, Stefan | cs |
dc.contributor.author | Drauschke, Andreas | cs |
dc.coverage.issue | 9 | cs |
dc.coverage.volume | 9 | cs |
dc.date.accessioned | 2020-12-02T11:55:26Z | |
dc.date.available | 2020-12-02T11:55:26Z | |
dc.date.issued | 2019-12-24 | cs |
dc.description.abstract | Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (n(Total) = 3273) with highest standard deviation vertical bar 3 sigma vertical bar for both, simplified lung equivalents (mu(V) = 23.98 +/- 1.04 l/min, mu(P) = -0.78 +/- 0.63 hPa) and primed porcine lungs (mu(V) = 18.87 +/- 2.49 l/min, mu(P) = -21.13 +/- 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration. | en |
dc.format | text | cs |
dc.format.extent | 1-12 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Scientific Reports. 2019, vol. 9, issue 9, p. 1-12. | en |
dc.identifier.doi | 10.1038/s41598-019-56176-6 | cs |
dc.identifier.issn | 2045-2322 | cs |
dc.identifier.other | 162245 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/195736 | |
dc.language.iso | en | cs |
dc.publisher | NATURE PUBLISHING GROUP | cs |
dc.relation.ispartof | Scientific Reports | cs |
dc.relation.uri | https://www.nature.com/articles/s41598-019-56176-6#article-info | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2045-2322/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | respiration simulation; biomedical electromechanical; systems | en |
dc.subject | alternative to animal testing | en |
dc.subject | lung simulation | en |
dc.subject | primed porcine lungs | en |
dc.subject | biomedical engineering education | en |
dc.title | Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-162245 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2020.12.02 12:55:25 | en |
sync.item.modts | 2020.12.02 12:14:10 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. . Fachhochschule Technikum Wien | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41598019561766.pdf
- Size:
- 2.51 MB
- Format:
- Adobe Portable Document Format
- Description:
- s41598019561766.pdf