Electro-mechanical Lung Simulator Using Polymer and Organic Human Lung Equivalents for Realistic Breathing Simulation

Loading...
Thumbnail Image

Authors

Paštěka, Richard
Forjan, Mathias
Sauermann, Stefan
Drauschke, Andreas

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

NATURE PUBLISHING GROUP
Altmetrics

Abstract

Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (n(Total) = 3273) with highest standard deviation vertical bar 3 sigma vertical bar for both, simplified lung equivalents (mu(V) = 23.98 +/- 1.04 l/min, mu(P) = -0.78 +/- 0.63 hPa) and primed porcine lungs (mu(V) = 18.87 +/- 2.49 l/min, mu(P) = -21.13 +/- 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.
Simulation models in respiratory research are increasingly used for medical product development and testing, especially because in-vivo models are coupled with a high degree of complexity and ethical concerns. This work introduces a respiratory simulation system, which is bridging the gap between the complex, real anatomical environment and the safe, cost-effective simulation methods. The presented electro-mechanical lung simulator, xPULM, combines in-silico, ex-vivo and mechanical respiratory approaches by realistically replicating an actively breathing human lung. The reproducibility of sinusoidal breathing simulations with xPULM was verified for selected breathing frequencies (10-18 bpm) and tidal volumes (400-600 ml) physiologically occurring during human breathing at rest. Human lung anatomy was modelled using latex bags and primed porcine lungs. High reproducibility of flow and pressure characteristics was shown by evaluating breathing cycles (n(Total) = 3273) with highest standard deviation vertical bar 3 sigma vertical bar for both, simplified lung equivalents (mu(V) = 23.98 +/- 1.04 l/min, mu(P) = -0.78 +/- 0.63 hPa) and primed porcine lungs (mu(V) = 18.87 +/- 2.49 l/min, mu(P) = -21.13 +/- 1.47 hPa). The adaptability of the breathing simulation parameters, coupled with the use of porcine lungs salvaged from a slaughterhouse process, represents an advancement towards anatomically and physiologically realistic modelling of human respiration.

Description

Citation

Scientific Reports. 2019, vol. 9, issue 9, p. 1-12.
https://www.nature.com/articles/s41598-019-56176-6#article-info

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO