Automatická anotace obrazu

but.committeeprof. Ing. Miloslav Filka, CSc. (předseda) Ing. Zdeňka Chmelíková, Ph.D. (místopředseda) Ing. Jiří Přinosil, Ph.D. (člen) Ing. Jiří Krejčí, Ph.D. (člen) Ing. Miroslav Balík, Ph.D. (člen) doc. Ing. Radim Burget, Ph.D. (člen) Ing. Pavel Hanák, Ph.D. (člen)cs
but.defenceUvádíte, že Tamurova metrika je implementací 3 vlastností, ale následně jich uvádíte více. Uveďte na pravou míru a vysvětlete pojem vytěžení.: Student otázku zodpověděl.cs
but.jazykčeština (Czech)
but.programElektrotechnika, elektronika, komunikační a řídicí technikacs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorBurget, Radimcs
dc.contributor.authorHegmon, Jiřícs
dc.contributor.refereeKarásek, Jancs
dc.date.created2013cs
dc.description.abstractRozeznávání a porovnávání obrazu je jedním z hlavních problémů a okruhů oboru počitačového vidění. Tato práce k těmto dvěma problémům připojuje třetí, rozpoznání semantiky, významu obrazu, tzv. anotaci nebo label. Práce využívá znalosti metod rozpoznávání podobnosti obrazů k vytvoření nástroje, který je schopen na základě trénovací množiny obrazů a anotací vytvořit skupinu nejpravděpodobnějších anotací pro danou testovací množinu obrazů. Tato práce představuje několik druhů testovacích množin vhodných pro rozpoznávání anotačních informací u obrazů. Následně je vybrána nejvhodnější množina s potřebnou velikostí trénovací množiny a dostatkem informací v anotacích. Na základě této trénovací množiny je navrhnut algoritmus pro snadné načtení testovací množiny bez velkých nároků na výkon počítače. Vyhodnocení anotačních informací testovací množiny je prováděno na základě různých podobnostních algoritmů. Na počátku této práce byly použity jednoduché, ale nepříliš efektivní metody MSE a porovnání barevných histogramů, postupně bylo ale nutno přejít k použítí náročnějších metod (jako je například Tamura, Gabor, CEDD nebo různé druhy hostistogramů). Výsledky tohoto porovnání jsou nakonec brány pro vyhodnocení pravděpodobnosti výskytu dané anotace pro daný obrázek určené testovací množiny. Na závěr práce je provedeno vyhodnocení přesnosti určení anotace na základě informací z použitých trénovacích množin.cs
dc.description.abstractRecognition and comparison of image is one of the main problems and area of the field of computer vision. This thesis adds to these two issues the third, the recognition image semantics, so called annotations or labels. This work uses the knowledge of methods of recognizing the similarity of images to create a tool that is able based on training dataset of images and annotations, create a group most likely annotation for the test set of images. This work presents several types of test datasets suitable for the detection of annotation information for images. Subsequently, best set with the necessary training dataset size and enough information about annotations is selected. Based on this training dataset algorithm is designed for easy loading test set without large demands on computer performance. Evaluation of annotation information is done based on different similarity algorithms. At the beginning of this work was to use a simple, but not very effective method of MSE and comparison of color histograms, but gradually it was necessary to move to using more advanced methods (such as Tamura, Gabor, CEDD nebo různé druhy hostistogramů). The results of this comparison are then taken to evaluate the likelihood of the annotation for the image specified test set. The last part is an evaluation of the accuracy of annotation based on information from the test set.en
dc.description.markAcs
dc.identifier.citationHEGMON, J. Automatická anotace obrazu [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2013.cs
dc.identifier.other66652cs
dc.identifier.urihttp://hdl.handle.net/11012/26552
dc.language.isocscs
dc.publisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologiícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectObrazcs
dc.subjectRozpoznánícs
dc.subjectPodobnostcs
dc.subjectAnotace obrazucs
dc.subjectImageen
dc.subjectRecognitionen
dc.subjectSimilarityen
dc.subjectAnotationen
dc.subjectLabelen
dc.titleAutomatická anotace obrazucs
dc.title.alternativeAutomatic image annotationen
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2013-06-13cs
dcterms.modified2013-06-14-12:25:14cs
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs
sync.item.dbid66652en
sync.item.dbtypeZPen
sync.item.insts2025.03.26 13:08:44en
sync.item.modts2025.01.15 20:18:34en
thesis.disciplineTelekomunikační a informační technikacs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs
thesis.levelInženýrskýcs
thesis.nameIng.cs
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
Description:
final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.zip
Size:
7.79 MB
Format:
zip
Description:
appendix-1.zip
Loading...
Thumbnail Image
Name:
review_66652.html
Size:
3.52 KB
Format:
Hypertext Markup Language
Description:
file review_66652.html
Collections