Interakce plazmatu s kapalnou fází
Loading...
Date
Authors
ORCID
Advisor
Referee
Mark
P
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta chemická
Abstract
Disertační práce se zabývá detailním studiem vlastností různých elektrických výbojů generovaných ve vodných roztocích. Tyto výboje se staly v posledním desetiletí velmi populárním tématem, a to zejména díky mnoha praktickým využitím jako například v biomedicíně, čištění odpadních vod, ekologii nebo nanoinženýrství. Studium je zaměřeno na generaci peroxidu vodíku, jakožto jednu z nejvýznamnějších částic generovaných právě elektrickými výboji v kapalinách. Pro první část této práce byla využita speciální výbojová komora zkonstruovaná na Fakultě chemické Vysokého Učení Technického v Brně. Komora byla rozdělena tenkou diafragmovou přepážkou na dvě poloviny, přičemž uvnitř přepážky se nacházela malá dírka. V každé části komory se nacházela jedna elektroda, a obě dvě části komory byly vyplněny kapalinou. Ze zdroje bylo do kapaliny aplikováno vysokofrekvenční napětí (1 a 2 kHz), které tak vlastně upravovalo roztok chloridu sodného (1.5 l). Bylo zjištěno, že tento druh napětí, v porovnání s DC, nezpůsobuje nežádoucí přehřívání roztoku (počáteční vodivost 100 - 800 S/cm) během jeho úpravy při zachování účinnosti produkce peroxidu. Experimentální aparatura pro druhou část práce byla sestavena na Gentské Univerzitě v Belgii. Stejnosměrný výboj byl generován v bublinách plynů (He, Ar, N2, vzduch) v prostředí vodných roztoků. Byla studována generace peroxidu vodíku a odbourávání organických barviv přítomných ve zkoumaném roztoku. Ke generaci peroxidu vodíku byl použit roztok NaH2PO4 . 2H2O (5 microS/cm, V= 750 ml), ke zkoumání rozkladu barviv byly použity roztoky organických barviv Direct Red 79 (20 mg/l) a Direct Blue 106 (20 mg/l, V= 750 ml). Minimální koncentrace peroxidu vodíku byla naměřena při aplikaci proudu 10 mA, zatímco maximální koncentrace peroxidu vodíku byla zaznamenána při použití proudu 30 mA. Rozklad organických barviv vykazoval stejné vlastnosti. Čím vyšší byla dodávaná energie, tím více barviva se odbouralo. Třetí část práce probíhala ve spolupráci s Queen's University of Belfast, Centrum for Plasma Physics, UK. K realizaci experimentů bylo využito vysokofrekvenčního plazmového skalpelu (Arthrocar). Bylo zjištěno, že hodnota koncentrace peroxidu vodíku dosahovala maxima v roztocích s nepatrným přídavkem alkoholu (0.25 %). Celkem byly studovány čtyři 0.15 M roztoky BaCl2, Na2CO3, KCl a NaCl (V= 20 ml), jejichž počáteční vodivost se pohybovala kolem 13 mS/cm. Z výsledků bylo patrné, že největší rozdíl hodnot pH byl zaznamenán u roztoků s přídavkem ethanolu. V optických emisních spektrech byly identifikovány především radikály OH, které jsou prekurzory peroxidu vodíku. Výsledky ukázaly, že plazma v takovémto roztoku je stále tvořeno, což může být považováno za první krok generace plazmatu v organických sloučeninách. Poslední část práce byla zaměřena na tzv. mikroplazmatický jet v přímém kontaktu s kapalnou fází. Tato experimentální práce byla realizována na pracovišti Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), University of Ulster, UK během studijní stáže. Jako vodivé médium byl použit roztok trihydrátu kyseliny chlorozlatité s různou počáteční vodivostí. Zajímavým zjištěním je fakt, že při tomto druhu měření bylo generováno stabilní plazma i při velmi malém výbojovém proudu (0.05 a 0.2 mA), a tedy i peroxid vodíku vznikal při velmi malé vstupní energii, což může být považováno za velmi dobrý výsledek.
This Ph.D. thesis contains a detailed investigation of different electric discharges generated in liquids. These discharges have become a popular topic during the last decade, mainly due to many practical applications for example in biomedicine, waste water treatment, ecology and nanoengineering. The study is focused on hydrogen peroxide generation which is one of the most important particles generated by electric discharges in liquids. A special batch discharge chamber, constructed at the Brno University of Technology, Faculty of Chemistry, Czech Republic, was used for the first experimental part. This discharge chamber is separated by a diaphragm membrane with a pin hole at its centre. A single high voltage electrode is placed in each part of the chamber, which is filled by water solution. High frequency voltage (1 and 2 kHz) was used as a power source to treat a NaCl solution (1.5 l). After evaluation of all results it has been found that this kind of power supply, compared to DC, does not cause any unwanted overheating of the solution (initial conductivity 100 - 800 microS/cm) during its treatment and thus the hydrogen peroxide production efficiency is quite high. The second part of this thesis was done at the Ghent University, Department of Applied Physics, Belgium. Here the DC discharge was created in gas bubbles (He, Ar, N2 or Air) flowing water solutions. NaH2PO4 . 2H2O solution (5 microS/cm, V= 750 ml) was used to hydrogen peroxide production studies, Direct Red 79 (20 mg/l) and Direct Blue 106 (20 mg/l, V= 750 ml) solutions were chosen for the organic dyes destruction study. The minimal concentration of the H2O2 was obtained when 10 mA current was applied, while the maximum concentration was observed at the current 30 mA. It leads to the conclusion that concentration of hydrogen peroxide increases with increasing applied current. The organic decomposition showed the same trend. The higher energy was applied, the more organic dye was destructed. The third part of this thesis took place at the Queen's University of Belfast, Centrum for Plasma Physics, UK using high frequency plasma scalpel (Arthrocare). It was found that the hydrogen peroxide concentration has reached the maximal value in solutions with a small addition of an alcohol (0.25 %). Four different treated liquid 0.15 M water solutions of BaCl2, Na2CO3, KCl and NaCl (V= 20 ml) were used. The initial conductivity of the samples was around 13 mS/cm. From the taken results it was obvious that the biggest difference between pH values was obtained in the solution with the additional of ethanol. The active particles generated by discharge were detected by spectra, mainly OH radicals which are understood as precursors to hydrogen peroxide. The main innovation was study of the influence of additional of organic compound on the plasma process. It was obtained that plasma still can be generated in such solution kind which can be considered as the first step to plasma created in the pure organic liquid medium. The last part of this work looked at atmospheric pressure microplasma jet interaction with the liquid phase and it was carried out at the Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), University of Ulster, UK during host internship. As a liquid medium a gold (III) chloride trihydrate (HAuCl4.3H2O) aqueous solution with different initial conductivity was used. Interestingly, even a very low current (0.05 and 0.2 mA) generates stable plasma and produces hydrogen peroxide which can be understood as a very good result. Here, H2O2 behaviours as an oxidizing agent which converts gold precursors into gold nanoparticles.
This Ph.D. thesis contains a detailed investigation of different electric discharges generated in liquids. These discharges have become a popular topic during the last decade, mainly due to many practical applications for example in biomedicine, waste water treatment, ecology and nanoengineering. The study is focused on hydrogen peroxide generation which is one of the most important particles generated by electric discharges in liquids. A special batch discharge chamber, constructed at the Brno University of Technology, Faculty of Chemistry, Czech Republic, was used for the first experimental part. This discharge chamber is separated by a diaphragm membrane with a pin hole at its centre. A single high voltage electrode is placed in each part of the chamber, which is filled by water solution. High frequency voltage (1 and 2 kHz) was used as a power source to treat a NaCl solution (1.5 l). After evaluation of all results it has been found that this kind of power supply, compared to DC, does not cause any unwanted overheating of the solution (initial conductivity 100 - 800 microS/cm) during its treatment and thus the hydrogen peroxide production efficiency is quite high. The second part of this thesis was done at the Ghent University, Department of Applied Physics, Belgium. Here the DC discharge was created in gas bubbles (He, Ar, N2 or Air) flowing water solutions. NaH2PO4 . 2H2O solution (5 microS/cm, V= 750 ml) was used to hydrogen peroxide production studies, Direct Red 79 (20 mg/l) and Direct Blue 106 (20 mg/l, V= 750 ml) solutions were chosen for the organic dyes destruction study. The minimal concentration of the H2O2 was obtained when 10 mA current was applied, while the maximum concentration was observed at the current 30 mA. It leads to the conclusion that concentration of hydrogen peroxide increases with increasing applied current. The organic decomposition showed the same trend. The higher energy was applied, the more organic dye was destructed. The third part of this thesis took place at the Queen's University of Belfast, Centrum for Plasma Physics, UK using high frequency plasma scalpel (Arthrocare). It was found that the hydrogen peroxide concentration has reached the maximal value in solutions with a small addition of an alcohol (0.25 %). Four different treated liquid 0.15 M water solutions of BaCl2, Na2CO3, KCl and NaCl (V= 20 ml) were used. The initial conductivity of the samples was around 13 mS/cm. From the taken results it was obvious that the biggest difference between pH values was obtained in the solution with the additional of ethanol. The active particles generated by discharge were detected by spectra, mainly OH radicals which are understood as precursors to hydrogen peroxide. The main innovation was study of the influence of additional of organic compound on the plasma process. It was obtained that plasma still can be generated in such solution kind which can be considered as the first step to plasma created in the pure organic liquid medium. The last part of this work looked at atmospheric pressure microplasma jet interaction with the liquid phase and it was carried out at the Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), University of Ulster, UK during host internship. As a liquid medium a gold (III) chloride trihydrate (HAuCl4.3H2O) aqueous solution with different initial conductivity was used. Interestingly, even a very low current (0.05 and 0.2 mA) generates stable plasma and produces hydrogen peroxide which can be understood as a very good result. Here, H2O2 behaviours as an oxidizing agent which converts gold precursors into gold nanoparticles.
Description
Citation
NĚMCOVÁ, L. Interakce plazmatu s kapalnou fází [online]. Brno: Vysoké učení technické v Brně. Fakulta chemická. 2013.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Fyzikální chemie
Comittee
prof. Ing. Ladislav Omelka, DrSc. (předseda)
doc. Bratislav Obradovic, oponent (člen)
doc. RNDr. Antonín Brablec, CSc., oponent (člen)
doc. RNDr. Anna Zahoranová, CSc., oponent (člen)
prof. RNDr. Stanislav Novák, CSc. (člen)
prof. Ing. Martina Klučáková, Ph.D. (člen)
doc. Mgr. Pavel Slavíček, Ph.D. (člen)
doc. RNDr. Milada Bartlová, Ph.D. (člen)
Date of acceptance
2013-06-17
Defence
Předseda komise představil doktorandku a předal jí slovo. Následovala cca 30 minutová powerpointová prezentace vedená v angličtině. Poté byly přečteny posudky dvou oponentů, oba kladné. Oba posudky obsahovaly řadu dotazů a připomínek, které byly doktorandkou uspokojivým způsobem zodpovězeny.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení