Magnetically Driven Micro and Nanorobots

dc.contributor.authorZhou, Huaijuancs
dc.contributor.authorMayorga-Martinez, Carmen C.cs
dc.contributor.authorPane, Salvadorcs
dc.contributor.authorZhang, Lics
dc.contributor.authorPumera, Martincs
dc.coverage.issue8cs
dc.coverage.volume121cs
dc.date.accessioned2021-11-16T09:52:53Z
dc.date.available2021-11-16T09:52:53Z
dc.date.issued2021-04-28cs
dc.description.abstractManipulation and navigation of micro and nanoswimmers in different fluid environments can be achieved by chemicals, external fields, or even motile cells. Many researchers have selected magnetic fields as the active external actuation source based on the advantageous features of this actuation strategy such as remote and spatiotemporal control, fuel-free, high degree of reconfigurability, programmability, recyclability, and versatility. This review introduces fundamental concepts and advantages of magnetic micro/nanorobots (termed here as "MagRobots") as well as basic knowledge of magnetic fields and magnetic materials, setups for magnetic manipulation, magnetic field configurations, and symmetry-breaking strategies for effective movement. These concepts are discussed to describe the interactions between micro/nanorobots and magnetic fields. Actuation mechanisms of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted motion), applications of magnetic fields in other propulsion approaches, and magnetic stimulation of micro/nanorobots beyond motion are provided followed by fabrication techniques for (quasi)spherical, helical, flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots in targeted drug/gene delivery, cell manipulation, minimally invasive surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery, pollution removal for environmental remediation, and (bio)sensing are also reviewed. Finally, current challenges and future perspectives for the development of magnetically powered miniaturized motors are discussed.en
dc.formattextcs
dc.format.extent4999-5041cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationChemical Reviews. 2021, vol. 121, issue 8, p. 4999-5041.en
dc.identifier.doi10.1021/acs.chemrev.0c01234cs
dc.identifier.issn0009-2665cs
dc.identifier.other171812cs
dc.identifier.urihttp://hdl.handle.net/11012/202280
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofChemical Reviewscs
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c01234cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0009-2665/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectARTIFICIAL BACTERIAL FLAGELLAen
dc.subjectBUBBLE-PROPELLED MICROMOTORSen
dc.subjectCONTROLLED PROPULSIONen
dc.subjectNANOPARTICLE SWARMSen
dc.subjectSWIMMING PROPERTIESen
dc.subjectJANUS MICROMOTORSen
dc.subjectCARGO DELIVERYen
dc.subjectMOTION CONTROLen
dc.subjectCELL-CULTUREen
dc.subjectMICROROBOTSen
dc.titleMagnetically Driven Micro and Nanorobotsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-171812en
sync.item.dbtypeVAVen
sync.item.insts2021.11.16 10:52:53en
sync.item.modts2021.11.16 10:46:32en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acs.chemrev.0c01234.pdf
Size:
34.35 MB
Format:
Adobe Portable Document Format
Description:
acs.chemrev.0c01234.pdf