Laser-Induced MXene-Functionalized Graphene Nanoarchitectonics-Based Microsupercapacitor for Health Monitoring Application

dc.contributor.authorDeshmukh, Sujitcs
dc.contributor.authorGhosh, Kalyancs
dc.contributor.authorPykal, Martincs
dc.contributor.authorOtyepka, Michalcs
dc.contributor.authorPumera, Martincs
dc.coverage.issue20cs
dc.coverage.volume17cs
dc.date.accessioned2024-02-20T15:46:10Z
dc.date.available2024-02-20T15:46:10Z
dc.date.issued2023-10-04cs
dc.description.abstractMicrosupercapacitors (micro-SCs) with mechanical flexibility have the potential to complement or even replace microbatteries in the portable electronics sector, particularly for portable biomonitoring devices. The real-time biomonitoring of the human body's physical status using lightweight, flexible, and wearable micro-SCs is important to consider, but the main limitation is, however, the low energy density of micro-SCs as compared to microbatteries. Here using a temporally and spatially controlled picosecond pulsed laser, we developed high-energy-density micro-SCs integrated with a force sensing device to monitor a human body's radial artery pulses. The photochemically synthesized spherical laser-induced MXene (Ti3C2T x )-derived oxide nanoparticles uniformly attached to laser-induced graphene (LIG) act as active electrode materials for micro-SCs. The molecular dynamics simulations and detailed spectroscopic analysis reveal the synergistic interfacial interaction mechanism of Ti-O-C covalent bonding between MXene and LIG. The incorporation of MXene nanosheets improves the graphene sheet alignment and ion transport while minimizing self-restacking. Furthermore, the micro-SCs based on a nano-MXene-LIG hybrid demonstrate high mechanical flexibility, durability, ultrahigh energy density (21.16 x 10(-3) mWh cm(-2)), and excellent capacitance (similar to 100 mF cm(-2) @ 10 mV s(-1)) with long cycle life (91% retention after 10 000 cycles). Such a single-step roll-to-roll highly reproducible manufacturing technique using a picosecond pulsed laser to induce MXene-derived spherical oxide nanoparticles (size of quantum dots) attached uniformly to laser-induced graphene for biomedical device fabrication is expected to find a wide range of applications.en
dc.formattextcs
dc.format.extent20537-20550cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationACS Nano (e-ISSN). 2023, vol. 17, issue 20, p. 20537-20550.en
dc.identifier.doi10.1021/acsnano.3c07319cs
dc.identifier.issn1936-086Xcs
dc.identifier.orcid0000-0001-6840-6590cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other186979cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttps://hdl.handle.net/11012/245097
dc.language.isoencs
dc.publisherAMER CHEMICAL SOCcs
dc.relation.ispartofACS Nano (e-ISSN)cs
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acsnano.3c07319cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1936-086X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectLaser-induced MXeneen
dc.subjectlaser-induced grapheneen
dc.subjectcovalent bondingen
dc.subjectmicrosupercapacitoren
dc.subjectbiomonitoringdeviceen
dc.titleLaser-Induced MXene-Functionalized Graphene Nanoarchitectonics-Based Microsupercapacitor for Health Monitoring Applicationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-186979en
sync.item.dbtypeVAVen
sync.item.insts2024.02.20 16:46:10en
sync.item.modts2024.02.20 16:13:22en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
deshmukhetal2023laserinducedmxenefunctionalizedgraphenenanoarchitectonicsbasedmicrosupercapacitorforhealth.pdf
Size:
9.61 MB
Format:
Adobe Portable Document Format
Description:
file deshmukhetal2023laserinducedmxenefunctionalizedgraphenenanoarchitectonicsbasedmicrosupercapacitorforhealth.pdf