Artefacts Removal from Brain EEG Signals Using Adaptive Algorithms

Loading...
Thumbnail Image
Date
ORCID
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Tato práce se zabývá problémem artefaktů ve záznamech elektroencefalografie (EEG) a metodami jejich odstranění s důrazem na adaptivní filtrace. Artefakty jsou neodmys- litelnou součástí metody EEG a negativně ovlivňují analýzu výsledků tím, že překrývají zájmové mozkové signály. Adaptivní filtrace je všestrannou metodou, kterou lze použít pro odstranění těchto artefaktů, pokud je k dispozici referenční signál korelovaný s arte- faktem. Hlavním cílem této práce je návrh a implementace frameworku, který umožní aplikaci metod adaptivní filtrace na EEG data. Druhotným cílem je posouzení účinnosti nového algoritmu Q-LMS při odstraňování artefaktů z EEG, protože dosud nebyl v tomto scénáři použit. Práce představuje knihovnu v prostředí Python pro adaptivní filtrace EEG a ukazuje a hodnotí experimenty pro scénáře odstraňování artefaktů s použitím Q-LMS fil- tru implementovaného v navržené knihovně. V této knihovně je uživatel schopen vytvářet přizpůsobitelné filtrační pipeliny. Knihovna nabízí různé adaptivní filtry a metody vytváření referenčního signálu s důrazem na zpracování neurologických dat ve formátu BIDS. Uži- vatel však může sdílet vlastní filtry s frameworkem a také používat vlastní vstupní data a referenční signály. Experimenty s Q-LMS algoritmem ukázaly, že se jedná o dobře fun- gující adaptivní algoritmus, avšak výsledky filtrace byly průměrný ve srovnání s výsledky dosaženými jinými standardními adaptivními algoritmy
This thesis covers the problem of artifacts in electroencephalography (EEG) data and the methods used to remove them with a focus on adaptive filtering. Artifacts are an unavoid- able part of the EEG method and they have a negative impact on the analysis of the results by covering the brain signals of interest. Adaptive filtering is a versatile method that can be used for removal of these artifacts if the reference signal correlated with the artifact is pro- vided. The primary goal of this thesis is a proposal and implementation of the framework that can be used to apply methods of adaptive filtering on EEG data. The secondary goal is to examine the effectiveness of a novel Q-LMS algorithm on the task of removal of artifacts from EEG as it was not yet used in this scenario. The work is introducing a library in a Python environment for EEG adaptive filtering and shows and evaluates experiments for EEG artifact removal scenarios with a Q-LMS filter implemented in the proposed library. In this library, a user is able to construct customizable filtering pipelines. The library of- fers a variety of adaptive filters and reference-building methods with a focus on processing neurological data in BIDS format. However, the user is able to share his custom filters with the framework as well as use his own input data and reference signals. The experiments with Q-LMS showed that it is a well-functioning adaptive algorithm yet the filtering results were moderate in contrast to results obtained by other standard adaptive algorithms.
Description
Citation
HATALA, J. Artefacts Removal from Brain EEG Signals Using Adaptive Algorithms [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Informační technologie
Comittee
prof. Dr. Ing. Jan Černocký (předseda) doc. Ing. Zdeněk Vašíček, Ph.D. (člen) Ing. Václav Šátek, Ph.D. (člen) Ing. Filip Orság, Ph.D. (člen) Ing. Vladimír Bartík, Ph.D. (člen)
Date of acceptance
2023-06-15
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO