Software and Hardware Solutions for Channel Estimation based on Cyclic Golay Sequences

Loading...
Thumbnail Image
Date
2016-12
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
This paper presents channel estimation methods based on cyclic complementary Golay sequences. First, the conventional Golay correlator is investigated, then a frequency domain approach using Discrete Fourier Transform (DFT) is provided. A complex valued fast Golay correlator is introduced which can be used for the estimation of complex valued channel impulse response. Furthermore, this paper presents the Recursive DFT (R-DFT), a signal processing architecture which may be beneficial compared to the well-known Fast Fourier Transform (FFT). The R-DFT is able to efficiently calculate a point-by-point block spectra of the input signal, which makes it suitable for hardware implementation. Throughout the paper, the R-DFT is applied and it is compared to the conventional estimation methods. Finally, the efficiency of the proposed schemes is compared through simulations based on the 60 GHz WiGig and the COST 207 standard, applying various channel models.
Description
Citation
Radioengineering. 2016 vol. 25, č. 4, s. 801-807. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2016/16_04_0801_0807.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 3.0 Unported License
http://creativecommons.org/licenses/by/3.0/
Collections
Citace PRO