Basic method for water detection in LiPF<sub>6</sub>-based electrolytes

Loading...
Thumbnail Image

Authors

Šimek, Antonín
Kazda, Tomáš
Báňa, Jiří
Čech, Ondřej

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Altmetrics

Abstract

This paper investigates the effect of water content on lithium-ion battery electrolytes with particular emphasis on the degradation of lithium hexafluorophosphate, a commonly used salt in commercial electrolytes. The study addresses various degradation mechanisms caused by water in a battery system. In addition, the research utilizes electrochemical techniques to detect water and associated changes in electrochemical performance of the cell. The electrochemical water detection method investigated is very fast. The lower detection limit was not tested, but contamination of 250 ppm can be reliably detected. It can be used, for example, in experimental research to determine the purity and quality of the electrolyte used.{GRAPHIACAL ABSTRACT}
This paper investigates the effect of water content on lithium-ion battery electrolytes with particular emphasis on the degradation of lithium hexafluorophosphate, a commonly used salt in commercial electrolytes. The study addresses various degradation mechanisms caused by water in a battery system. In addition, the research utilizes electrochemical techniques to detect water and associated changes in electrochemical performance of the cell. The electrochemical water detection method investigated is very fast. The lower detection limit was not tested, but contamination of 250 ppm can be reliably detected. It can be used, for example, in experimental research to determine the purity and quality of the electrolyte used.{GRAPHIACAL ABSTRACT}

Description

Citation

MONATSHEFTE FUR CHEMIE. 2024, vol. 155, issue 3-4, p. 313-317.
https://link.springer.com/article/10.1007/s00706-023-03163-3

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO